View allAdhesives & SealantsApplication NotesApplicationsArchiveARES G2 AccessoriesARES RheometerAutomated Density TesterAutomated Hardness TesterBatteriesBatteries & Battery MaterialsBatteriesBatteriesBiopharmaBiopharmaceuticalsBlog ApplicationsBlog Techniquescardiovascular instrumentsCase StudiesCeramicsCompositesCompositesDHR AccessoriesDifferential Scanning CalorimetersDifferential Scanning CalorimetryDIL 830 SeriesDilatometersDilatometryDilatometryDilatometryDiscovery Hybrid RheometersDraftsDynamic Mechanical Analysis (DMA)Dynamic Mechanical AnalyzersDynamic Mechanical Analyzers (DMA)Dynamic Mechanical Analyzers (Rheology)Dynamic Mechanical Analyzers (Thermal Analysis)ElastomersElectroForceElectroForceElectroForce NotesElectroForceElectroForceElectroForceElectronic Materials & ProductsElectronicsEnd of Life ProductsEngineered MaterialsFine & Specialty ChemicalsFlash Diffusivity SystemsFlash DiffusivityFlash DiffusivityFood ProductsGeneralGlass ProductsGuarded heat flow meterHeating MicroscopesHigh Pressure AnalyzersHigh Throughput DSCHorizontal DilatometersIn-Person TrainingInorganics - OtherInorganics - MineralsInsulation & Building MaterialsIsothermal CalorimetryIsothermal Titration CalorimetryLaser FlashLoad frame systemsMaterial CharacterizationMechanical TestingMechanical TestingMedical Device TestingMedical DevicesMetals ProductsMicrocalorimetryMicrocalorimetryMicrocalorimetryMicrocalorimetryMicrocalorimetry NotesMicrocalorimetryMooney ViscometerMoving Die RheometerMulti-Specimen FatigueNews & InfoOils, Lubricants, & FluidsOptical DilatometersOptical FleximeterOrganic Chemicals & ProductsPaints, Inks, & CoatingsPaints, Inks, & CoatingsPercarbonatesPersonal Care & Household ProductsPetroleum ProductsPharmaceuticalsPharmaceuticalsPolymersPolymersprivateProduct videosProductsPromotionsQ SeriesQuenching DilatometersQuick start guidesRheologyRheologyRheologyRheology AccessoryRheologyRheology NotesRheologyRotational ViscometerRubberRubber AccessoriesRubberRubber Process AnalyzersRubberRubber TestingRubber TestingRubber TestingRubothermSeminarsService VideosSimultaneous Thermal AnalyzerSoftwareSoftwareTA Quick Talk VideosTech TipsTestbench and Planar Biaxial systemsTGA AccessoriesThermal AnalysisThermal AnalysisThermal AnalysisThermal Analysis NotesThermal AnalysisThermal ApplicationsThermal Conductivity & DiffusivityThermal Conductivity MeterThermal ConductivityThermal ConductivityThermogravimetric AnalysisThermomechanical AnalyzersThermophysical NotesThermophysical Properties NotesTrainingUncategorizedVapor Sorption AnalysisVertical DilatometersVideosDilatometryWebinarsMicrocalorimetryRheologyRubberThermal AnalysisXenon Flash

Why Rheology is Relevant and Accessible: Dispelling 5 Myths About Rheology

Will your paint stick to the wall or drip off? Does your low-fat cream cheese have the same texture as a full-fat version? How will new ingredients affect your formulation’s texture and application, especially as environmental conditions change? Rheology offers invaluable insights that help researchers, developers, and engineers across numerous industries optimize their products for performance and customer satisfaction.

Details

What Your Material Specification Sheet Doesn’t Tell You

When it comes to selecting materials for your next innovative product, the material specification sheet is likely the first place that you will turn. This document provides core properties measured by the manufacturer and serves as an essential tool for supplier verification and new product development. However, while these sheets are reliable and provide a standard method for comparison, they often fail to tell the whole story.

Details

What is Thermogravimetric Analysis?

A testament to the march of scientific inquiry, thermogravimetry emerged through the integration of three individual inventions in the 19th and 20th centuries: the electric furnace, the thermocouple, and the microbalance. As a cornerstone of material science, chemistry, and various other industries, thermogravimetric analysis (TGA) has since developed in leaps and bounds. Today, TA Instruments are leading the way in TGA, and we welcome you to join us as we explore the workings and applications of this groundbreaking technique.

Details

What is Differential Scanning Calorimetry?

Differential scanning calorimetry is an analytical technique used to measure the amount of heat released or absorbed by a sample during heating or cooling over a range of temperature. As well as being used to characterize the thermal properties of a material, a differential scanning calorimeter is used to determine the temperature at which particular phase transitions occur, including glass transition temperature, fusion and crystallization events.

Details

What are Rheometry and Rheology?

Whether researchers are optimizing the texture of yogurt or studying adhesives’ curing, rheometry helps us understand materials and predict their behavior. Rheometry measures the amount of deformation a material or liquid undergoes when a force is applied. The combination of stress, strain and shear behavior forms the basis of rheology, the science of the deformation of materials.

Details

Viscometer vs Rheometer: Discover Why a Rheometer Offers More Than Just Viscosity Measurement

If you’re working with materials that can be flowed, for example within pharmaceutical, food, cosmetics, or petrochemical industries, it’s likely that there is a viscometer in the laboratory that is the go-to instrument for formulation testing or QA purposes. However, does this viscometer give you the whole picture and fully meet all your needs?

Details

Understanding Storage and Loss Modulus with TA Instruments

In the world of material science, understanding the viscoelastic properties of materials is crucial for developing and optimizing products. Two key parameters in this context are storage modulus (E’ or G’) and loss modulus (E” or G”). These parameters provide insights into a material’s stiffness and damping characteristics, respectively, which are essential for applications ranging from polymers and pharmaceuticals to batteries and composites.

Details

The Importance of Fatigue Testing: Prevent Product Failures Early

From faster prototyping to ensuring long-term performance, fatigue testing is a critical step in product development across a variety of industries that rely on high-performance materials, like polymers, rubber compounds, and composites. When done properly, fatigue testing accelerates development by helping engineers make informed decisions about prototypes and designs.

Details

Rheology of Hydrogels

Hydrogels are three-dimensional porous strctures that can absorb large amounts of water. They can be made up of polymers, protein, peptides, colloids, surfactants, or lipids.1 Hydrogels’ ability to uptake large amounts of water is useful for many biological applications, including drug delivery and tissue engineering. Since a hydrogels’ properties change as it absorbs water, scientists must accurately characterize its behavior at different saturation amounts and in varying conditions.

Details

Post-consumer Resin Legislation: What Polymer Developers Need to Know

From fresh steak to new phones, the goods we buy are usually wrapped in one thing: plastic. And plastic dominates how we pack and store products for good reason – it is lightweight, cost-efficient, and durable. Plastic helps us transport and receive goods in perfect condition, thus reducing food waste and preventing damaged goods from heading to landfills.

Details

Polymer Rheology: Unlocking Insights with the Hybrid Rheometer

Polymer rheology plays a critical role in understanding the flow behavior and viscoelastic properties of polymers across the supply chain. Whether in polymer manufacturing, compounding, conversion, or recycling, precise rheological measurements are essential for optimizing processing conditions, ensuring product quality, and preventing defects.

Details

Optimization of Catalytic Reactions by High-Pressure TGA

Catalytic reactions are everywhere: from plastics and bread to over 90% of all chemicals worldwide, countless goods and materials are manufactured with the aid of catalysts.1 Catalysts are substances that speed up sluggish chemical reactions. Faster reactions are more technologically and economically competitive. Furthermore, optimized catalysts offer a huge potential to reduce energy and resource consumption and lower carbon dioxide emissions.

Details