Der Weg zu einer US-amerikanischen Produktion von Elektrofahrzeugbatterien

Aufgrund des Verbraucherinteresses und der Nachhaltigkeitsziele ist die Nachfrage nach Elektrofahrzeugen stark gestiegen. Bis 2030 möchten die USA einen 50%igen Anteil von Elektroautos am Gesamtmarkt erreichen – die Rohmaterialien und Komponenten für Elektrofahrzeugbatterien werden jedoch zu 99 % außerhalb des Landes produziert.1, 2 Die Beschaffung von im Ausland hergestellten Materialien und Batterien hat bereits zu branchenweiten Problemen geführt. Russlands Invasion in die Ukraine führte zu einer Instabilität des Markts, durch die der Preis für Nickel, einem Hauptmaterial bei der Batterieherstellung, im März 2022 extrem anstieg.3

Vier kostengünstige Möglichkeiten zur Aufrüstung von Laborgeräten

Die Technologie schreitet rasch voran. Ganz gleich, ob Sie alte Geräte aufrüsten oder neue Verfahren an Ihrem Arbeitsplatz implementieren möchten: Der Einsatz hochmoderner Instrumente wird Effizienz und Ergebnisse Ihres Labors mit Sicherheit verbessern. Heutzutage bieten Geräte zuverlässigere Daten und fortschrittlichere Funktionen, und beides sind entscheidende Faktoren, um bei der Werkstoffinnovation führend zu bleiben.

Optimierung Ihrer Lyophilisierungen mithilfe der Thermoanalyse

Bei der Lyophilisierung, oder Gefriertrocknung, wird Wasser aus einer Probe entfernt, oft zum Zweck der Konservierung. Dabei wird unter anderem der Wassergehalt einer Probe sublimiert, gewöhnlich durch einen schnellen Gefrierprozess. Durch das rasche Einfrieren des Materials kann die Zerstörung der Zellwände der Probe durch die Bildung großer Eiskristalle verhindert werden.

Rheologie von Hydrogelen

Hydrogele sind dreidimensionale poröse Strukturen, die große Mengen Wasser absorbieren können. Sie können aus Polymeren, Proteinen, Peptiden, Kolloiden, Tensiden oder Lipiden zusammengesetzt sein.1 Die Fähigkeit von Hydrogelen, große Mengen Wasser aufzunehmen, ist bei vielen biologischen Applikationen nützlich, einschließlich Arzneimittelabgabe (Drug Delivery) und Gewebezüchtung. Da sich die Eigenschaften von Hydrogelen während der Wasseraufnahme ändern, müssen Wissenschaftler deren Verhalten bei verschiedenen Sättigungsmengen und unter verschiedenen Bedingungen genau charakterisieren.

Materialanalyse zur Qualitätssicherung und Abbau von Biokunststoffen

Was ist Biokunststoff? Wie können Hersteller thermische Analyse, Rheologie und mechanische Analyse nutzen, um Biokunststoffe erfolgreich in Produkte einzuarbeiten? Angesichts vieler aufkommender grüner Technologien müssen Hersteller und Verbraucher zwischen Greenwashing1 und wirklichem Fortschritt unterscheiden. Wenn eine neue Entwicklung als vorteilhaft für die Umwelt betrachtet wird, müssen alle Phasen der Kunststoff-Lieferkette, insbesondere die Umformung von Kunststoffen durch Converter, lernen, neue Technologien anzuwenden, ohne deren Prozesse oder Produkte zu beschädigen.

Rheologie von Arzneimitteln zur Lokaltherapie für die Entwicklung neuer Produkte oder Generika

Die Entwicklung von Arzneimitteln ist stark reguliert, und das aus gutem Grund. Bevor sie auf den Markt kommen, müssen potenzielle neue Produkte strengen Tests unterzogen werden, um sicherzustellen, dass ihre Sicherheit, Reinheit und Leistung akzeptabel sind. Die Vorschriften für topische Cremes halten lebenslange Stabilitätsparameter ein und verlangen die Identifizierung von Verunreinigungen, bevor die Produkte den Verbraucher erreichen.

Fortschritte in der Lithium-Ionen-Batterietechnologie durch Rheologie

Lithium-Ionen-Batterien sind die dominierenden wiederaufladbaren Batterien auf dem heutigen Markt. Sie kommen in zahlreichen Anwendungen zum Einsatz, darunter in der Unterhaltungselektronik, in Elektrofahrzeugen und in Industrieanlagen. Angesichts der enormen Verbreitung von Lithium-Ionen-Batterien in den letzten Jahren liegt der Schwerpunkt der Forschung im Bereich der Batterietechnologie auf der Verbesserung der Lebensdauer, Leistung und Sicherheit dieser Batterien.

Wie die Entwicklung nachhaltiger Polymere durch die dynamisch-mechanische Analyse unterstützt wird

Die dynamisch-mechanische Analyse (DMA) ist eine Messtechnik, mit der die Reaktion von Materialien auf dynamische oder zyklische Kräfte gemessen wird. Typischerweise wird bei der dynamisch-mechanischen Analyse die elastische und viskose Reaktion des Materials unter einer kleinen oszillierenden Last untersucht, um die Reaktion der Molekularstruktur auf die Störung zu prüfen. Im Rahmen der Tests können auch andere Variablen wie Temperatur, Zeit und Frequenz verändert werden, um zu charakterisieren, wie sich das Material unter verschiedenen Umgebungsbedingungen verhält.