3 zeitsparende Techniken für die Polymerforschung

Eine Zeitersparnis in der Polymerforschung bietet viele Vorteile und kann auf unterschiedliche Weise erreicht werden: von der Reduktion der Zeit für die Anwenderschulung über die Erhöhung des Forschungsdurchsatzes bis zum Erreichen präziser und reproduzierbarer Ergebnisse. Wir stellen Ihnen hier 3 Möglichkeiten für 3 Techniken (Rheologie, TGA und DSC) vor, die Ihnen Lösungen dazu an die Hand geben, wie Sie bei der Polymerforschung Zeit sparen können.

Vier kostengünstige Möglichkeiten zur Aufrüstung von Laborgeräten

Die Technologie schreitet rasch voran. Ganz gleich, ob Sie alte Geräte aufrüsten oder neue Verfahren an Ihrem Arbeitsplatz implementieren möchten: Der Einsatz hochmoderner Instrumente wird Effizienz und Ergebnisse Ihres Labors mit Sicherheit verbessern. Heutzutage bieten Geräte zuverlässigere Daten und fortschrittlichere Funktionen, und beides sind entscheidende Faktoren, um bei der Werkstoffinnovation führend zu bleiben.

Rheologie von Hydrogelen

Hydrogele sind dreidimensionale poröse Strukturen, die große Mengen Wasser absorbieren können. Sie können aus Polymeren, Proteinen, Peptiden, Kolloiden, Tensiden oder Lipiden zusammengesetzt sein.1 Die Fähigkeit von Hydrogelen, große Mengen Wasser aufzunehmen, ist bei vielen biologischen Applikationen nützlich, einschließlich Arzneimittelabgabe (Drug Delivery) und Gewebezüchtung. Da sich die Eigenschaften von Hydrogelen während der Wasseraufnahme ändern, müssen Wissenschaftler deren Verhalten bei verschiedenen Sättigungsmengen und unter verschiedenen Bedingungen genau charakterisieren.

Materialanalyse zur Qualitätssicherung und Abbau von Biokunststoffen

Was ist Biokunststoff? Wie können Hersteller thermische Analyse, Rheologie und mechanische Analyse nutzen, um Biokunststoffe erfolgreich in Produkte einzuarbeiten? Angesichts vieler aufkommender grüner Technologien müssen Hersteller und Verbraucher zwischen Greenwashing1 und wirklichem Fortschritt unterscheiden. Wenn eine neue Entwicklung als vorteilhaft für die Umwelt betrachtet wird, müssen alle Phasen der Kunststoff-Lieferkette, insbesondere die Umformung von Kunststoffen durch Converter, lernen, neue Technologien anzuwenden, ohne deren Prozesse oder Produkte zu beschädigen.

Wie die Entwicklung nachhaltiger Polymere durch die dynamisch-mechanische Analyse unterstützt wird

Die dynamisch-mechanische Analyse (DMA) ist eine Messtechnik, mit der die Reaktion von Materialien auf dynamische oder zyklische Kräfte gemessen wird. Typischerweise wird bei der dynamisch-mechanischen Analyse die elastische und viskose Reaktion des Materials unter einer kleinen oszillierenden Last untersucht, um die Reaktion der Molekularstruktur auf die Störung zu prüfen. Im Rahmen der Tests können auch andere Variablen wie Temperatur, Zeit und Frequenz verändert werden, um zu charakterisieren, wie sich das Material unter verschiedenen Umgebungsbedingungen verhält.

Optimierung von katalytischen Reaktionen durch Hochdruck-TGA

Katalytische Reaktionen sind allgegenwärtig: von Kunststoffen und Brot bis hin zu über 90% aller Chemikalien weltweit werden unzählige Waren und Materialien mit Hilfe von Katalysatoren hergestellt. Katalysatoren sind Substanzen, die träge chemische Reaktionen beschleunigen. Schnellere Reaktionen sind technologisch und wirtschaftlich wettbewerbsfähiger. Darüber hinaus bieten optimierte Katalysatoren ein enormes Potenzial zur Reduzierung des Energie- und Ressourcenverbrauchs und zur Senkung der Kohlendioxidemissionen.

Gesetzgebung für Kunststoffe nach dem Gebrauch: Was Entwickler von Polymeren wissen sollten

Vom frischen Steak bis zum neuen Handy – die Waren, die wir kaufen, sind in der Regel in Plastik verpackt. Es ist kein Wunder, dass Kunststoff bei der Verpackung und Lagerung von Produkten dominiert – er ist leicht, kostengünstig und langlebig. Kunststoffverpackungen ermöglichen es uns, Waren in einwandfreiem Zustand zu transportieren und zu erhalten, wodurch die Lebensmittelverschwendung verringert wird und man verhindert, dass beschädigte Waren auf der Mülldeponie landen.

Was ist Dynamische Differenzkalorimetrie?

Die Dynamische Differenzkalorimetrie ist ein Analyseverfahren zur Messung der Wärmemenge, die von einer Probe beim Erhitzen oder Abkühlen über einen bestimmten Temperaturbereich abgegeben oder aufgenommen wird. Eine Dynamische Differenzkalorimetrie wird nicht nur zur Charakterisierung der thermischen Eigenschaften eines Materials verwendet, sondern auch zur Bestimmung der Temperatur, bei der bestimmte Phasenübergänge auftreten, einschließlich der Glasübergangstemperatur oder Schmelz- und Kristallisierungsvorgängen.

Was sind Rheometrie und Rheologie?

Ob Forscher die Textur von Joghurt optimieren oder die Aushärtung von Klebstoffen untersuchen – die Rheometrie hilft uns, Materialien zu verstehen und ihr Verhalten vorherzusagen. Die Rheometrie misst das Ausmaß der Verformung eines Materials oder einer Flüssigkeit, wenn eine Kraft darauf einwirkt. Die Kombination von Spannung, Deformation und Scherverhalten bildet die Grundlage der Rheologie, der Wissenschaft von der Verformung von Materialien.