Optimization of Catalytic Reactions by High-Pressure TGA

Catalytic reactions are everywhere: from plastics and bread to over 90% of all chemicals worldwide, countless goods and materials are manufactured with the aid of catalysts.1 Catalysts are substances that speed up sluggish chemical reactions. Faster reactions are more technologically and economically competitive. Furthermore, optimized catalysts offer a huge potential to reduce energy and resource consumption and lower carbon dioxide emissions.

Cutting-Edge Lithium-Ion Battery Development is Supported by Thermal Analysis Research

Whether you’ve used a cell phone or driven an electric vehicle (please, not at the same time), you’ve probably come to realize that lithium-ion batteries are taking over the energy world. They power our portable electronics, vital medical equipment, electric vehicles, and renewable energy storage. As the market expands, researchers are finding ways to make Li-ion batteries increasingly powerful, dependable, and safe, all while minimizing production time and cost.

What is Isothermal Titration Calorimetry (ITC)?

Isothermal Titration Calorimetry (ITC) is an experimental method used to measure the amount of heat released or consumed during a bimolecular chemical reaction. Chemical reactions can be either exothermic or endothermic, depending on the relative energetic stabilities of the reactants. Isothermal titration calorimetry can be used to quantify the magnitude of the heat change during the reaction.

What is Dynamic Mechanical Analysis?

From plastic for medical devices to rubber for tires, the materials we use must meet increasingly high demands. Product manufacturers and consumers expect their materials to look good, perform well, and cost less, all while being environmentally friendly. Fulfilling all these expectations requires deep understanding of material behavior from the molecular level to real world mechanical properties. Since there are many factors that affect the properties of materials, precise measurement tools and methods are required to ensure that materials fulfill the high expectations of our world. A key measurement and analysis method to evaluate the properties of materials at various stages of development and production is Dynamic Mechanical Analysis (DMA).

Microcalorimetry for the Biophysical Characterization of Macromolecules

Biological macromolecules are fundamental components of every cell and are therefore essential for all life. These vital molecules are categorized into four major classes: carbohydrates, lipids, proteins, and nucleic acids. Characterizing biological macromolecules is important for understanding their functions and relationships, which empowers the development of new therapies and treatments. Under this branch of macromolecule research, biotherapeutic drug therapy focuses on macromolecular interactions which can lead to disease and/or cell death.

What does COP 26 mean for the batteries industry?

In autumn of 2021, the 26th UN Climate Change Conference of the Parties (COP 26) met in Glasgow to work out agreements to curb greenhouse gas emissions and prevent additional climate change. COP 26 built upon the Paris Agreement to limit global warming below 2-degrees Celsius by achieving net zero carbon dioxide (CO2) emissions. These two agreements will shape how governments and industries work together to reduce climate change over the next decade.

What is Differential Scanning Calorimetry?

Differential scanning calorimetry is an analytical technique used to measure the amount of heat released or absorbed by a sample during heating or cooling over a range of temperature. As well as being used to characterize the thermal properties of a material, a differential scanning calorimeter is used to determine the temperature at which particular phase transitions occur, including glass transition temperature, fusion and crystallization events.