Wie die Entwicklung nachhaltiger Polymere durch die dynamisch-mechanische Analyse unterstützt wird

Die dynamisch-mechanische Analyse (DMA) ist eine Messtechnik, mit der die Reaktion von Materialien auf dynamische oder zyklische Kräfte gemessen wird. Typischerweise wird bei der dynamisch-mechanischen Analyse die elastische und viskose Reaktion des Materials unter einer kleinen oszillierenden Last untersucht, um die Reaktion der Molekularstruktur auf die Störung zu prüfen. Im Rahmen der Tests können auch andere Variablen wie Temperatur, Zeit und Frequenz verändert werden, um zu charakterisieren, wie sich das Material unter verschiedenen Umgebungsbedingungen verhält.

Die Entwicklung hochmoderner Lithium-Ionen-Batterien wird durch Forschung im Bereich der thermischen Analyse unterstützt

Egal, ob Sie schon einmal ein Mobiltelefon benutzt oder ein Elektrofahrzeug gefahren haben (bitte nicht gleichzeitig), ist Ihnen wahrscheinlich bewusst geworden, dass Lithium-Ionen-Batterien die Energiewelt erobern. Diese Batterien treiben unsere tragbare Elektronik, lebenswichtige medizinische Geräte, Elektrofahrzeuge und erneuerbare Energiespeicher an. Angesichts des wachsenden Marktes suchen Forscher:innen Wege, um Li-Ionen-Batterien immer leistungsstärker, zuverlässiger und sicherer zu machen und zugleich die Produktionszeit und -kosten zu minimieren.

Was ist eine dynamisch-mechanische Analyse?

Von Kunststoffen für medizinische Geräte bis hin zu Gummi für Reifen – die von uns verwendeten Materialien müssen immer höheren Anforderungen genügen. Produkthersteller und Verbraucher:innen erwarten von ihren Materialien, dass sie gut aussehen, gut funktionieren, wenig kosten und gleichzeitig umweltfreundlich sind. Um all diese Erwartungen zu erfüllen, ist ein tiefes Verständnis des Materialverhaltens von der molekularen Ebene bis hin zu den realen mechanischen Eigenschaften erforderlich. Da es viele Faktoren gibt, die die Eigenschaften von Materialien beeinflussen, sind präzise Messinstrumente und -methoden erforderlich, um sicherzustellen, dass die Materialien die hohen Erwartungen unserer Welt erfüllen. Eine wichtige Mess- und Analysemethode zur Bewertung der Eigenschaften von Materialien in verschiedenen Entwicklungs- und Produktionsstadien ist die dynamisch-mechanische Analyse (DMA).

Gesetzgebung für Kunststoffe nach dem Gebrauch: Was Entwickler von Polymeren wissen sollten

Vom frischen Steak bis zum neuen Handy – die Waren, die wir kaufen, sind in der Regel in Plastik verpackt. Es ist kein Wunder, dass Kunststoff bei der Verpackung und Lagerung von Produkten dominiert – er ist leicht, kostengünstig und langlebig. Kunststoffverpackungen ermöglichen es uns, Waren in einwandfreiem Zustand zu transportieren und zu erhalten, wodurch die Lebensmittelverschwendung verringert wird und man verhindert, dass beschädigte Waren auf der Mülldeponie landen.

Was bedeutet COP 26 für die Batterieindustrie?

Im Herbst 2021 trat die 26. UN-Klimakonferenz der Vertragsparteien (COP 26) in Glasgow zusammen, um Vereinbarungen zur Verringerung der Treibhausgasemissionen und zur Verhinderung eines weiteren Klimawandels auszuarbeiten. COP 26 baute auf dem Pariser Abkommen auf, die globale Erwärmung auf weniger als 2 Grad Celsius zu begrenzen, indem die Kohlendioxid (CO2)-Emissionen auf Null reduziert werden. Diese beiden Abkommen werden bestimmen, wie Regierungen und Industrie zusammenarbeiten, um den Klimawandel in den nächsten zehn Jahren einzudämmen.

Was sind Rheometrie und Rheologie?

Ob Forscher die Textur von Joghurt optimieren oder die Aushärtung von Klebstoffen untersuchen – die Rheometrie hilft uns, Materialien zu verstehen und ihr Verhalten vorherzusagen. Die Rheometrie misst das Ausmaß der Verformung eines Materials oder einer Flüssigkeit, wenn eine Kraft darauf einwirkt. Die Kombination von Spannung, Deformation und Scherverhalten bildet die Grundlage der Rheologie, der Wissenschaft von der Verformung von Materialien.

Vom Friedensnobelpreis 2019 bis heute: Wie geht es mit Lithium-Ionen-Batterien weiter?

Lithium-Ionen-Batterien verändern die Industrielandschaft durch effiziente Energiespeicherung. Die heutigen Batterieforscher:innen müssen auf früheren Forschungsergebnisse aufbauen. Alle Elemente der Batterie sowie deren Materialien müssen analysiert und optimiert werden, damit der zukünftige Fortschritt in den Anwendungsbereichen gewährleistet wird.