

Dynamic Mechanical Analysis Basic Theory & Applications Training Part 1

Course outline

Part 1

- Basic Theories of Dynamic Mechanical Analysis
- DMA Instrumentation and Clamps
- Introduction to DMA Experiments
 - o Dynamic tests
 - o Transient tests
- Appendix: Screenshots from the instrument control software

Part 2

- Recap of Part 1
- DMA Applications and data interpretation
- Troubleshooting experimental Issues
- Time-temperature superposition (TTS)

Basic Theories of Dynamic Mechanical Analysis

DMA definitions

- A Dynamic Mechanical Analyzer (DMA) measures the mechanical/rheological properties of a material as a function of time, frequency, temperature, stress and strain
- Typical materials tested on a DMA
 - Thermal plastic and thermosets
 - Elastomers/ rubbers
 - o Gels
 - o Foams
 - o More....

Working principle of a DMA

- Apply a force or a deformation to a sample, then measure sample's response, which will be a deformation or a force.
- All mechanical parameters (stress, strain, modulus, stiffness et al) are calculated from these 2 raw signals

Hooke's Law of Elasticity

- For a purely Elastic Solid, Stress and Strain have a constant proportionality
- The slope of stress over strain is the Young's modulus of the material

 $\sigma = E^* \epsilon$

Newton's Law of Viscosity

- For a purely Viscous Liquid, Stress is proportional to Strain Rate $d\epsilon/dt$
- The slope of stress over strain rate is the viscosity of the material

Time dependency of mechanical properties in viscoelastic materials

- In tensile testing of viscoelastic materials, the rate of extension will give different results
 - the stress depends on both the strain, and the strain rate

 $\sigma = \mathsf{E}^*\varepsilon + \eta^*d\varepsilon/dt$

Time-dependent viscoelastic behavior

10

- Long deformation time: pitch behaves like a highly viscous liquid
 - 。 9th drop fell July 2013
- Short deformation time: pitch behaves like a solid

Started in 1927 by Thomas Parnell in Queensland, Australia

Silly putty video

- Let's take another common example silly putty
- When we pull on silly putty slowly, it is flowy and stretchy like a liquid.
- However, if we pull on it quickly, it snaps and breaks like a solid.

Time-dependent viscoelastic behavior (silly putty)

Time-period of deformation is short (high frequency)

Time-period of deformation is long (low frequency)

12

Dynamic Mechanical Testing

- An oscillatory (sinusoidal) deformation (stress or strain) is applied to a sample.
- The material response (strain or stress) is measured.
- The phase angle δ , or phase shift, between the deformation and response is also measured.

Phase angle response in dynamic mechanical tests

Viscoelastic parameters obtained from DMA tests

<u>Complex Modulus:</u> Measure of materials overall resistance to deformation.

<u>The Elastic (Storage) Modulus:</u> Measure of elasticity of material. The ability of the material to store energy.

<u>The Viscous (loss) Modulus:</u> The ability of the material to dissipate energy. Energy lost as heat.

<u>Tan Delta:</u>

Measure of material damping. Increasing tan δ implies a greater potential for energy dissipation and lower elasticity, and vice-versa. Measure of viscous property while having the appropriate level of stiffness.

 $E^{*} = \frac{stress \ amplitude \ (\sigma)}{strain \ amplitude \ (\gamma)}$

$$\mathbf{E}' = \left(\frac{\sigma}{\gamma}\right) \cos \delta$$

 $E'' = \left(\frac{\sigma}{\gamma}\right)\sin\delta$

 $\tan \delta = \left(\frac{E'}{E'}\right)$

Storage and Loss of a Viscoelastic Material

Viscoelastic spectrum for a typical amorphous polymer

Temperature

DMA results can correlate to.....

DMA Instrumentation and Clamps

DMA instrumentation

RSA G2

Discovery DMA850

Electroforce series (high load frame, fatigue)

DMA instrumentation

RSA G2 Separate Motor & Transducer

DMA850 and Q800

Combined Motor & Transducer

RSA G2: Schematic Dual Head Design

DMA850: Schematic

DMA850 and Q800: Humidity Option

	RSA G2	DMA850	Q800
Max Force	35 N	18 N	18 N
Min Force	0.0005 N	0.0001 N	0.0001 N
Displacement Resolution	1 nm	0.1 nm	1 nm
Frequency Range	2 x 10 ⁻⁶ to 100 Hz	1 x 10 ⁻⁴ to 200 Hz	1 x 10 ⁻² to 200 Hz
Dynamic Deformation Range	± 5 x 10 ⁻⁵ to 1.5 mm	± 5 x 10 ⁻⁶ to 10 mm	± 5 x 10 ⁻⁴ to 10 mm
Temperature range	-150 to 600°C	-150 to 600°C	-150 to 600°C
Isothermal Stability	± 0.1	± 0.1	± 0.1
Heating Rate	0.1°C to 60°C/min	0.1°C to 20°C/min	0.1°C to 20°C/min
Cooling Rate	0.1°C to 60°C/min	0.1°C to 10°C/min	0.1°C to 10°C/min

DMA Mode on DHR and ARES-G2

ARES G2 and DHR DMA Mode

Strain control & dynamic test only

Dynamic test only	DHR – DMA mode	ARES-G2 DMA mode
Motor Control	FRT	FRT
Minimum Force (N) Oscillation	0.003	0.001
Maximum Axial Force (N)	50	20
Minimum Displacement (μ m) Oscillation	0.01	0.5
Maximum Displacement (µm) Oscillation	100	50
Axial Frequency Range (Hz)	1 x 10 ⁻⁵ to 16	1 x 10 ⁻⁵ to 16

What samples can be measured on a DMA?

• By changing the clamp, we can test a range of different materials

Clamps for DMA850 and Q800

Shear Sandwich

Submersible Tension

Submersible Bending

Submersible Compression

Compression

S/D Cantilever

Contact Lens

RSA G2 Immersion Clamps

• Immersion clamp kit offers 3 geometries with temperature control from -10 to 200 $^{\circ}$ C in the FCO.

Compression

3 Point Bending

Tension: Up to 25 mm long, 12.5 mm wide and 1.5 mm thick.
Compression: 15 mm in diameter; maximum sample thickness is 10 mm.
Three Point Bending: includes interchangeable spans for lengths of 10, 15, and 20 mm. Maximum sample width is 12.5 mm and maximum thickness is 5 mm.

Testing Solids on a Rheometer

Torsion (rotational) and DMA (axial) geometries allow solid samples to be characterized in a temperature controlled environment.

E = 2G(1 + v)v : Poisson's ratio

Parallel plate

Rectangular and cylindrical torsion

3-point bending Cantilever

Three fundamental modes of deformation

Poisson's Ratio

• Poisson's ratio, v, is the ratio of transverse to axial strain

Relationship between moduli and Poisson's ratio for elastic isotropic materials

- Elastic Isotropic materials are materials in which properties at a point are the same in all directions. Some examples of isotropic materials are unoriented amorphous polymers and annealed glasses [1].
- If any of the two elastic constants of a homogenous (in which properties do not vary from point to point) isotropic material, the other two may be calculated [2].

$$E = 2G(1 + v) = 3B(1 + 2v)$$

1. Nielsen, Lawrence E., Mechanical Properties of Polymers and Composites, Marcel Dekker, Inc., New York, 1974, p. 1.

2. Hayden, H. W., Moffatt, W.G., and Wulff, J., The structure and Properties of Materials, Volume III, Mechanical Behavior, John Wiley & Sons, Inc, New York, 1965, p.26.

Comparison of Moduli and Poisson's Ratio

Material	E (GPa)	ν	G (GPa)
Steel	220	0.28	85.9
Copper	120	0.35	44.4
Glass	60	0.23	24.4
Granite	30	0.30	15.5
Polystyrene	34	0.33	12.8
Polyethylene	24	0.38	8.7
Natural Rubber	0.02	0.49	0.0067

Cowie, J.M.G., Polymers: Chemistry & Physics of Modern Materials, 2nd Edition, 1991, p. 275, ISBN 0 7514 0134 X

Modulus calculations in DMA

DMA850 and Q800	RSA G2
Stiffness (K) = Force / Displacement Modulus (E) = K x GF	Stress (σ) = Force x K _{σ} Strain (γ)= Displacement x K _{γ} Modulus (E) = σ / γ
GF: Geometry factor. Clamp dependent Can be found in online help manual	K _σ : Stress constant K _γ : Strain constant Clamp dependent Can be found in online help manual

 $GF = K_{\sigma} / K_{\gamma}$

Choose the correct clamp for testing

Sample Dimension

- Films and fibers: tension clamps
- Bars and cylinders: bending clamps
- O-rings and tablets: compression and/or shear

Deformation Mode:

- E [tension, compression and bending]
- G [shear]

• Sample Stiffness:

Machine range fixed: 10² - 10⁷ N/m. Stiffness of sample related to its dimensions [L, w, t]. Stiffness may limit sample size to below clamp maximum.

DMA: Single Cantilever Clamp

- Sample which are stiff with a well-defined geometry allowing for sample dimensions can be measured accurately.
 - Precautions:
 - Soft samples (Tg < RT) with well-defined geometry such as elastomers may get pinched during clamping and cause errors in measurement.
 - Samples with high CTE can expand between the clamp faces and buckle, causing significant errors in measurement
- Mechanical properties, secondary transitions, T_g of polymers (thermoplastics/thermosets)
 - \circ Measurement of modulus and tan δ
- Typical sample length is 17.5 mm. Smaller sizes available.
- Use a consistent clamping torque (typically 10 in-lbs)

Geometry Factor - Single Cantilever Clamp

Modulus = Stiffness × Geometry Factor

If length/thickness > 10, the contribution of the term containing the Poisson's Ratio can be approximated to be negligible

$$\mathrm{GF}_{\mathrm{SC}} = \frac{l^3}{wt^3}$$

w = sample width
l = sample length
t = sample thickness

DMA: Dual Cantilever Clamp

- Samples which are stiff with a well-defined geometry allowing for sample dimensions can be measured accurately.
 - Precautions:
 - Soft samples (with Tg < RT) such as elastomers may get pinched during clamping and cause errors in measurement.
 - Samples with high CTE can expand between the clamp faces and buckle, causing significant errors in measurement
- Tracking cure of thermosets/composites, mechanical properties, secondary transitions and T_g of polymers (thermoplastics/thermosets)
 - $_\circ$ $\,$ $\,$ Measurement of modulus and tan δ
- Typical sample length is 35 mm. Smaller sizes available. Good for materials that require a larger sample size for homogeneity
- Use a consistent clamping torque (typically 10 in-lbs)

Geometry Factor - Dual Cantilever Clamp

Modulus = Stiffness × Geometry Factor (GF)

 $GF_{DC} = \frac{12 \cdot l^3 \left[1 + \frac{12}{5} (1 + \nu) \left(\frac{t}{l}\right)^2\right]}{24wt^3}$

If length/thickness > 10, the contribution of the term containing the Poisson's Ratio can be approximated to be negligible

$$\mathrm{GF}_{\mathrm{DC}} = \frac{l^3}{2wt^3}$$

w = sample width
I = sample length
t = sample thickness

DMA: 3 Point Bend Clamp

- Conforms with ASTM standard test method for bending
- Purest deformation mode since clamping effects are eliminated
- Samples which are stiff with a well-defined geometry allowing for sample dimensions can be measured accurately.
 - Precautions:
 - Samples that get soft around T_g (typically unfilled thermoplastics) can sag and introduce errors in modulus measurements.
- Tracking cure of thermosets/composites, mechanical properties and T_g of polymers that are stiff past the glass transition (filled thermoplastics/thermosets/elastomers)
 - $_{\circ}$ ~ Measurement of modulus and tan δ
- Typical sample lengths 50 mm and 20 mm. Smaller sizes available.
- Sample alignment along the stationary fulcrum is important.

Geometry Factor - 3 Point Bending Clamp

Modulus = Stiffness × Geometry Factor

DMA: Film/Fiber/Tension Clamp

- Films and fibers need to have a well-defined geometry allowing for sample dimensions can be measured accurately. Sample length is
 calculated automatically by the instrument.
- Applications
 - Mechanical properties, Tg, secondary transitions (modulus and tan δ)
 - Creep and stress relaxation
 - Temperature controlled constant force or displacement tests to understand processing effects and shrinkage
 - Generation of stress-strain curves
- Sample alignment between the clamps is important.
- Use a consistent clamping torque (typically 3-5 in-lbs)

Modulus = Stiffness × Geometry Factor

$$GF_{Film} = \frac{l}{wt}$$

- w = sample width
 - = sample length
- t = sample thickness

DMA: Compression Clamp

- Good mode for low to medium modulus materials (gels, elastomers) which are compressible throughout the test temperature range
 - Precautions:
 - Samples that are incompressible (typically below the Tg) are difficult to test under compression
 - Samples that are too soft and cannot support the load of the clamp need alterations in sample dimensions to get meaningful measurements
- Option for penetration measurements (no modulus information in penetration, only transitions and tan δ)
- Applications:

- Mechanical properties, Tg, secondary transitions (modulus and tan δ)
- Creep and stress relaxation
- Temperature controlled constant force or displacement tests to understand processing effects
- Alignment of plates attached to the moveable and stationary clamps is important.
- Sample diameter <= plate diameter (15 mm and 40 mm options). Use exact sample diameter

Geometry Factor – Film/fiber/tension clamp

Modulus = Stiffness × Geometry Factor

$$GF_{Comp} = \frac{thickness}{sample surface area} = \frac{t}{\pi r^2}$$

r = sample radius

t = sample thickness, between clamp faces

DMA: Shear Sandwich Clamp

- Good for evaluating highly damped soft solids such as gels and adhesives & elastomers > T_g
 - Precautions:
 - Samples should be able to support their own weight under gravity (no flow through the test temperature)
 - Clamping between the plates need to be consistent
- Applications:
 - $_{\circ}$ $\,$ $\,$ Mechanical properties, Tg, secondary transitions (modulus and tan $\delta)$
- 49 Sample size <= plate size</p>

Operating Range of the Shear Sandwich Clamp

Modulus = Stiffness × Geometry Factor

$$GF_{Shear} = \frac{3t}{5wh}$$

- w = sample width, i.e. horizontal dimension
- h = sample height, i.e. vertical dimension
- t = sample thickness, between clamp faces

Changing Sample Stiffness

Clamp Type	To Increase Stiffness	To Decrease Stiffness
Tension Film	Decrease length or increase width. If possible increase thickness.	Increase length or decrease width. If possible decrease thickness.
Tension Fiber	Decrease length or increase diameter if possible.	Increase length or decrease diameter if possible.
Dual/Single Cantilever	Decrease length or increase width. If possible increase thickness. Note: $L/T \ge 10$	Increase length or decrease width,, If possible decrease thickness. Note: $L/T \ge 10$
Three Point Bending	Decrease length or increase width. If possible increase thickness.	Increase length or decrease width. If possible decrease thickness.
Compression – circular sample	Decrease thickness or Increase diameter.	Increase thickness or decrease diameter.
Shear Sandwich	Decrease thickness or Increase length and width.	Increase thickness or decrease length and width.

DMA Clamping Guide

Sample	Clamp	Sample Dimensions
High modulus materials and composites	3-point Bend Dual Cantilever Single Cantilever	L/T> 10 if possible
Unreinforced thermoplastics or thermosets	Single Cantilever Dual cantilever	L/T >10 if possible
Brittle solid (ceramics)	3-point Bend	L/T>10 if possible
Elastomers	3-point bend Tension	L/T>10 if possible T<1 mm
Films/Fibers	Tension	L 10-20 mm T<2 mm
Supported Systems	8 mm Dual Cantilever	minimize sample, put foil on clamps

Instrument calibration

DMA850 Flow Chart of Calibration Procedures

- Follow the online help manual
- The stability verification is performed at installation
- Instrument calibration includes 2 steps: force and phase
- Clamp calibration: perform when newly attached.
- Position calibration from touchscreen

Q800 Flow Chart of Calibration Procedures

- Instrument calibration includes 3 steps: Electronics, Force, and Dynamic
- Position calibration: calibrate the absolute position of the drive shaft. Perform this calibration when DMA is moved, reset, or powered down.
- Clamp calibration: perform when newly attached.

RSA G2 Flow Chart of Calibration Procedures

- Follow the online help manual
- Instrument calibration: force and phase angle check
- Clamp calibration: mass (perform when newly attached)

Calibration Tasks and Recommended Intervals			
Calibration Task	Calibration Interval		
Upper Fixture Mass Calibration	Mandatory: During geometry creation (is a part of geometry configuration)		
Force Calibration	Suggested: Monthly. Mandatory: Following transducer replacement		
Phase Angle and Modulus Check	Suggested: Monthly Mandatory: Following actuator or transducer replacement		
Gap Temperature Compensation	Suggested: As required by the experiment		
Temperature Offset Table Calibration	Suggested: As needed		

See also: <u>https://www.youtube.com/user/TATechTips</u>

Available DMA Experiments (1) Dynamic Tests

Available oscillatory test modes

- Strain (stress) Sweep
- Time Sweep
- Frequency Sweep
- Temperature Ramp
- Temperature Step (Sweep) (TTS)
- Others

Some Clamps Require Offset (static) Force!

Preload force in tension

60

Net forces acting during oscillation (tension) static force > osc. force

Net forces acting during oscillation (tension) static force < osc. force

Preload force in compression, 3-point bending

Net forces acting during oscillation (compression and 3PB) static force > osc. force

Moveable clamp maintains contact with sample at all times due to net downward force

Net forces acting during oscillation (compression) static force < osc. force

Force track

- Recap: Desired situation for all clamps is that F_{static} > F_{osc}
- Force track = $\frac{F_{static}}{F_{osc}}$ • If $\frac{F_{static}}{F_{osc}} > 1$, then $F_{static} > F_{osc}$
- Force track ratio is expressed as a percentage
 - On 850 and 800, Force track = $\frac{F_{static}}{F_{osc}} \times 100\%$

• On RSA-G2, Force track =
$$\left(\frac{F_{static}}{F_{osc}} - 1\right) \times 100\%$$

Benefits of using force track

- Force track ensures that static force exceeds oscillation force throughout the experiment
- Values from 125-150% (850/Q800) or 25-50% (RSA-G2) is a good starting point for most samples
- Decreases static force in proportion to sample modulus in "Tension clamps" to reduce stretching as specimen weakens on increasing temperature.
- Constant (or static) force can be used as long as static force > oscillation force through out the entire experiment.
 - Stiff samples in 3-point bending (thermosets)

Temperature Ramp with Force Track

- Q800 uses the term "Dynamic Force" to denote oscillation force (F_{osc})
- Static Force tracks Dynamic Force throughout Temperature Ramp to prevent over-stretching

Clamp Type	Static Force	Force Track
Tension Film	0.01 N	120 to 150%
Tension Fiber	0.001 N	120%
Compression	0.001 to 0.01 N	125%
Three Point Bending Thermoplastic Sample	1 N	125 to 150%
Three Point Bending Stiff Thermoset Sample	1 N	150 to 200% Can use constant static force

- Note: Constant (or static) force can be used as long as static force > dynamic force through out the entire experiment.
- Refer to appendix for screenshots of setting force track parameters for your respective instrument

Dynamic Strain (Stress) Sweep

The material response to increasing deformation amplitude is monitored at a constant frequency and temperature.

<u>USES</u>

- Identify Linear Viscoelastic Region
- Resilience/elasticity

Dynamic Strain Sweep: Material Response

Rubber: Effect of Filler Content in Tire Rubber (NR)

- Instrument: TA Instruments ElectroForce DMA 3200 with FCO and ACS-3
- Samples: Cured Natural Rubber Compound with Two Filler Levels (40 & 60 PHR)
- Clamp: Tension
- Method: Strain Sweep at 10Hz
Dynamic Time Sweep

<u>USES</u>

- Curing studies
- Fatigue tests
- Stability against thermal degradation

Epoxy Curing on Glass Braid

Instrument: DMA850 Clamp: Dual cantilever Sample: Epoxy coated on glass braid Dynamic time sweep Temperature: 35°C Frequency: 1 Hz Amplitude: 10 µm

Frequency Sweep

 The material response to increasing frequency (rate of deformation) is monitored at a constant amplitude and temperature.

<u>USES</u>

- Quick comparison on modulus and elasticity on solids
- Study polymer melt processing (shear sandwich).
- Estimate long term properties with extended frequency (time) range using TTS

Happy and sad balls vide

- Set of 2 black rubber balls used as demonstration of viscoelastic behavior.
 - When dropped, the Happy Ball bounces and the Sad Ball does not.

Dynamic Mechanical Properties: Tan Delta

Dynamic Mechanical Properties: Tan Delta

- tan δ: Measure of material damping. Balancing viscous property while having the appropriate level of stiffness.
- Increasing tan δ implies a greater potential for energy dissipation and lower elasticity, and vice-versa.

$$\tan \delta = \left(\frac{E}{E'}\right)$$

- Sad ball has a much higher tan δ compared to the happy ball

Frequency Sweep: Material Response

log Frequency (rad/s or Hz)

Dynamic Temperature Ramp

 A linear heating rate is applied. The material response is monitored at a constant frequency and constant amplitude of deformation. Data is taken at user defined time intervals.

Recommend ramp rate for polymer testing: 1-5°C/min.

Temperature Step & Hold- Single /Multi-Frequency

 A step and hold temperature profile is applied. The material response is monitored at one, or over a range of frequencies, at constant amplitude of deformation

Time

Temperature Profile on Amorphous Polymers

DMA temperature ramp: Happy and sad balls

Experimental Considerations

- Sample
 - Deformation Mode
 - Stiffness (sample size and shape)
 - Clamp Type (sample size and shape)
- Static Force/Force Track
- Amplitude (single/multiple)
- Frequency (Single/multiple)
- Heating Rate/Temperature Program

Selecting Appropriate Amplitude and Force

- Strain consideration
 - Must be within the linear region
- Force consideration
 - Maximum 18 N on Q800, DMA850
 - Maximum 35 N on RSA G2
- Yielding /Creep
 - If the force is too high the specimen may deform irreversibly
 - Must consider behavior at all temperatures and frequencies
- Noise
 - Higher amplitude = lower noise (generally)
 - Trade off against yielding/creep behavior

Frequencies

- Single Frequency
 - In a temperature ramp the most commonly used frequency is between 1 to 10 Hz (6.28 or 63 rad/sec)
- Multiple Frequencies
 - For an ambient test the commonly used frequency range is from 0.1 10Hz.
 - Frequency sweeps at multiple temperatures for Time-Temperature Superpositioning (TTS)
 - Run from high to low frequencies for faster initial data acquisition (for DMA850 and Q800 users)
- Data Collection Rate
 - Lower frequencies take longer time control experiment
 - More frequencies = longer experiment

Temperature Program

- Temp ramp
 - Commonly used heating rate: 1-5°C/min
 - Larger samples have more thermal lag
 - Use slower ramp rates for lower frequencies and frequency sweeps because these take more time
- Temp sweep
 - No thermal lag but time consuming
 - Commonly used for TTS testing, typical temp step: 5-10°C
- Multiple temp steps
 - Commonly used to mimic certain application temperature profile

Available DMA Experiments (2) Transient Tests

Available transient test modes

- Creep-Recovery
- Stress Relaxation
- Iso-strain Temperature Ramp
- Iso-force Temperature Ramp
- Stress-Strain Rate Tests

Creep recovery

- A stress is applied to sample instantaneously at t_1 and held constant for a specific period of time. The strain is monitored as a function of time ($\gamma(t)$ or $\varepsilon(t)$).
- The stress is reduced to zero at t_2 and the strain is monitored as a function of time ($\gamma(t)$ or $\epsilon(t)$).

Creep recovery

Elastic

- Stain for t>t1 is constant
- Strain for t >t2 is 0

Viscous

- Stain rate for t>t1 is constant
- Strain for t>t1 increase with time
- Strain rate for t >t2 is 0

Creep recovery

time

92

Creep recovery : Creep and Recoverable Compliance

Mark, J., et. al., <u>Physical Properties of Polymers</u>, American Chemical Society, 1984, p. 102.

Creep-recovery test on PET Film

Creep: Material response

log time

Stress relaxation experiment

- Strain is applied to sample instantaneously (in principle) and held constant with time.
- Stress is monitored as a function of time $\sigma(t)$.

Stress relaxation experiment

Stress relaxation experiment

Response of ViscoElastic Material

Stress decreases with time starting at some high value and decreasing to zero.

- For small deformations (strains within the linear region) the ratio of stress to strain is a function of time only.
- This function is a material property known as the STRESS RELAXATION MODULUS, E(t)

Stress Relaxation: Compression

Stress Relaxation: Material response

Iso-strain/Iso-stress Temperature Ramp

- The strain or stress is held at a constant value and a linear heating rate is applied.
- Valuable for assessing mechanical behavior under conditions of confined or fixed load (stress) or deformation (strain).
- Example: Measure sample shrinkage (length shrinkage or shrinking force)

Iso-Strain Temp Ramp: Measure Shrinking Force

Iso-Force Temp Ramp: Measure Length Shrinkage

Stress-Strain Testing

- Sample is deformed under a constant linear strain rate, Hencky strain rate, force, or stress for generating more traditional stress-strain curves.
- Measure sample's Young's modulus, yield stress, strain hardening effect and sample fracture

Polysaccharide Film Stress-Strain Test

Summary of Part 1

Summary

- Introduction to Dynamic Mechanical Analysis Importance of mechanical analysis
 - Conventional (non-oscillatory) vs dynamic (oscillatory) mechanical analysis
 - Viscoelasticity
 - Definition and physical significance of viscoelastic parameters

- DMA Instrumentation and Clamps
 - DMAs offered by TA Instruments
 - Discovery DMA 850
 - RSA-G2
 - TA Electroforce series
 - Common clamp configurations
 - Use of stiffness as a guide to choose the appropriate clamp

Summary: DMA experiments

- Significance of pre-load force and force track
- Dynamic tests
 - -Strain/amplitude sweep
 - -Time sweep
 - -Frequency sweep
 - -Temperature ramp
 - -Temperature sweep

- Transient tests
 - -Creep-recovery
 - -Stress-relaxation
 - -lso-strain temperature ramp
 - –lso-stress temperature ramp
 - -Stress-strain tests

End of Part 1

See appendix in the subsequent slides for additional experimental setup details

Appendix Instrument control software screenshots

Dynamic/oscillation experiments

Offset force and force track on DMA850

Constant static force

× Cla						
☆ 0	scillation 👻 Temperature	Ramp 🗡				
ĺ	Amplitude	20.0	μm			
	Frequency	1.0	Hz			
	Initial/preload force	2.0	N			
	Use Force Track	125.0	%			
	Use current temperature					
	Ramp from	35	°C to 150 °C			
	Ramp rate	3.0	°C/min			
	Soak times		_			
	at Start temperature	00:05:00	hh:mm:ss			
	at End temperature	00:00:00	hh:mm:ss			
	Estimated time to complete 00:38:20 hh:mm:ss					

Post Test Conditions

Test Settings

Force track

Test Settings

× Cla	Clamp: Film Clamp					
* 0	Oscillation Temperature Ramp					
ſ	Amplitude	20.0	μm Hz			
	Initial/preload force	0.1	N %			
	Use current temperature					
	Ramp rate	3.0	°C/min			
	Soak times	00.05.00				
	at Start temperature at End temperature	00:00:00	nn:mm:ss hh:mm:ss			
	Estimated time to complete 00:38:20 hh:mm:ss					

Post Test Conditions

Offset force and force track on Q800

Constant static force

Summary Procedure Notes				
Procedure Information				
Test Temp Ramp / Freq Swee	P	-	-	
Notes Material is heated at a cor deformed (oscillated) at a frequencies and the mech	Notes Material is heated at a constant rate. While heating, the material is deformed (oscillated) at a constant amplitude (strain) over a range of frequencies and the mechanical properties measured.			
Temperature Ramp / Single Freque	ncy			
• Amplitude :	15.0000	μm	Advanced	
C Strain :	0.0000	%	Post Test	
Preload force:	2.0000	N		
Force track	125.	%		
Start temperature:	🔽 Use current			
	35.00	°C		
Soak time	5.00	min		
Final temperature:	150.00	°C		
Ramp rate:	3.00	°C/min		
Hold time at final temperature:	30.00	min		
\Method /Frequency Table/				

Force track

Summary	ary Procedure Notes				
- Procedu	Procedure Information				
Test	Temp Ramp / Fr	eq Sweep			•
Notes	Notes Material is heated at a constant rate. While heating, the material is deformed (oscillated) at a constant amplitude (strain) over a range of frequencies and the mechanical properties measured.				
- Tempera	ature Ramp / Single	Frequency -			
• A	mplitude :	15.0	000	μm	Advanced
S	train :	0.00	00	%	Post Test
Prelo	ad force:	0.01	00	N	
▼ F	orce track	125.		%	
Start ter	nperature:	v	Use current		
		38	5.00	°C	
Soak tin	ne	5.	00	min	
Final ter	nperature:	15	50.00	°C	
Ramp ra	ate:	3.	00	°C/min	
🗖 Hold	d time at final tempe	erature: 30).00	min	
\Method	(Frequency Table/				

Offset force and force track on RSA G2

Constant static force

 Proced 	Procedure:					
 1 	: Conditioning Options					
	Axial force adjustment					
	Mode Active	•				
	Tension Compression	n				
	Axial force	1.0 N	👿 Set initial value			
	Sensitivity	0.1 N	_			
	Proportional force Mode	Constant 💌				
	Advanced		•			

Force track

Procedur	re:			III 🗧
1:0	Conditioning Options Axial force adjustment Mode Active • O Tension © Compression	•		
	Axial force	2.0	N Set initial value	
	Sensitivity	0.1	N	
	Proportional force Mode	Force Tracking	g 🔹 🔲 Compensate	for modulus
	Axial Force > Dynamic Force	20.0]%	
	Minimum axial force	1.0	N	
	Programmed Extension Below	0.0	Pa	
	 Advanced 			

Dynamic Strain (Stress) Sweep

The material response to increasing deformation amplitude is monitored at a constant frequency and temperature.

<u>USES</u>

- Identify Linear Viscoelastic Region
- Resilience/elasticity

Programming Strain Sweep on DMA850

Experiment 1					
× Sample:	× Sample:				
Clamp: Film Clamp					
Oscillation Strain Sweep					
Temperature 25 °C					
Soak time 60.0 s					
Frequency 1.0 Hz					
Initial/preload force 0.1 N					
Use Force Track 125.0 %					
Sweep Mode					
Logarithmic O Linear O Discrete					
Strain 0.01 % to 10.0 %					
Points per decade 5					
Number of Sweeps 1					
Test Settings Post Test Conditions					

Programming Strain Sweep on Q800

Mode: DMA Multi-Strain

Summary	Procedure Notes			_	S	Immaru Proce	dure N	otes			
Proced	ure Information			_	00	Deservices luter		0(03			
Test	Strain Sweep			ㅋ		Procedure Info	mation -				
						Test Strain	Sweep				<u> </u>
Notes	Amplitudes) at a single fro	ally and deformed over : equency.	tange of strain	nefn 🔛		Notes Materi	al is held	isothermally and	deformed over a ra	nge of s	trains (
						amplitu	udes) at a	a single frequenc	oy.		
– Strain St											<u> </u>
Frequ	encu:	1.00	Hz	Advanced		Amplitude Table	• ——				
Preloa	ad force:	0.0100	N	- aranooa		🔘 Sinale		C Log	Linear		C Discrete
		0.0100		Post Test							
IM FO	rce track	125.	%			Amplitude		0.100	to 100.000	μm	
								10			
						Number of p	points:	13			
										_	
							Amp	olitude			Refresh Lable
Isothern	nal temperature:	35.00	°C			1	0.10				
		,				2	5.65			_	
Soak tir	ne:	5.00	min			3	11.20				
		10.00				4	16.75				
Number	of sweeps:	1	-			5	22.30				
		1.				6	27.85				
						7	33.40			~	
1.1.1.1.	Litter Charles To Lite I										1
Method	Amplitude Table/				N.	Aethod &Amr	olitude ⁻	Table/			

TA

Programming Strain Sweep on RSA G2

Experimen	it 2]					
Sample	Sample: PET film LN2 only					
Geome	etry: Tension fixture (rect	angle)				
Proced	lure of 2 steps				<u> </u>	** *
 ✓ 1: ✓ 2: 	Conditioning Options Ac Oscillation Amplitude Environmental Control Temperature Soak time	tive, Enabled 25 60.0	°C s	Inherit set point Wait for temperate	ture	
	Test Parameters Frequency Logarithmic sweep Strain % Points per decade	1.0 0.01 5	Hz to 10.0) %		
	 Data acquisition 					

Dynamic Time Sweep

<u>USES</u>

- Curing studies
- Fatigue tests
- Stability against thermal degradation

Programming Time Sweep/fatigue on DMA850

• Time sweep example

Oscillation Y Time Swee	ep Y		
Temperature	25	°C	
Soak time	60.0	s	
Strain	0.5	%	
Frequency	1.0	Hz	
Duration	300.0	s	
Initial/preload force	0.1	Ν	
Use Force Track	125.0	%	
Data sampling mode			
Sampling interval	10.0	s/pt	
Test Settings	st Test Co	nditio	ns

• Fatigue example

× Cla						
* 0	scillation 🔻 Fatigue Te	st ×				
	Temperature Soak time	25 00:05:00	°C hh:mm:ss			
	Amplitude	20.0	μm			
	Frequency	1.0	Hz			
	Initial/preload force	0.01	Ν			
	✓ Use Force Track	125.0	%			
	Total cycles	10000.0	Cycles			
	Total time 02:46:40 hh:mm:ss					
	Data sampling mode					
	econds/pt O cycles/pt O Total points					
	Sampling interval 10.0 s/pt					

Test Settings F

Post Test Conditions

Programming Time Sweep on Q800

Mode: DMA Multi-Frequency-Strain

Summary Procedure Notes	Summary Procedure Notes
Procedure Information	Procedure Information
Test Custom	Test Custom 💌 🔛 🖻
Notes	Notes
Method	Frequency Table
Amplitude : 20.0000 μm Advanced	Single C Log C Linear C Discrete
C Strain : 0.0000 % Post Test	Frequency 1.00 Hz
Preload force: 0.0100 N	
Force track 125. %	
Name Frequency sweep Editor	Frequency Refresh Lable
# Segment Description	
1 🔚 Data storage On	
2 🛃 Isothermal for 5.00 min	5
\Method (Frequency Table/	\Method }Frequency Table/

TA

Programming Time Sweep on RSA G2

• Time sweep example

[Experime	nt 2]				
Samp	le: PET film LN2 only				
Georr	netry: Tension fixture (rea	ctangle)			
Proce	dure of 2 steps				si 🖃 🥖 🛦
🕑 1	1: Conditioning Options A	ctive, Enable	d		
 2 	2: Oscillation Time				
	Environmental Control -				1
	Temperature	25	°C	Inherit set point	
	Soak time	60.0	s	Wait for temperature	
ſ	_ Test Parameters				
	Duration	300.0	s		
	Sampling interval	10.0	s/pt	~	
	Strain %	0.5	%	~	
	Single point			¥	
	Frequency	1.0	Hz 🗸		
L	Data acquisition				

• Fatigue example

Proc	cedure of 2 steps				ø
•	1: Conditioning Option	s Active, Enable	d		
ہ	2: Oscillation Cycle Sw	еер			
	- Environmental Contro	ol ————————————————————————————————————			
	Temperature	50	°C	Inherit set point	
	Soak time	300.0	S	Wait for temperature	•
	Test Parameters				h
	Total cycles	10000.0	Cycles		
	Total time	02:46:40	hh:mm:ss		
	Measure every	2.0	Cycles	_	
	Strain %	2.0	%	~	
	Frequency	1.0	Hz 🗸		

Advanced

Frequency Sweep

 The material response to increasing frequency (rate of deformation) is monitored at a constant amplitude and temperature.

<u>USES</u>

- Quick comparison on modulus and elasticity on solids
- Study polymer melt processing (shear sandwich).
- Estimate long term properties with extended frequency (time) range using TTS

Programming Frequency Sweep on DMA850

	Experiment 1]						
(× Sample:						
(× Clamp: Film Clamp						
	* (Oscillation 👻 Frequency	Sweep 🔻				
		Temperature	25	°C			
		Soak time	60.0	s			
		Strain	0.5	%			
		Initial/preload force	0.1	Ν			
		✓ Use Force Track	125.0	%			
		Sweep Mode ● Logarithmic ○ Li	near 🔿 🛙)iscrete			
		Frequency	0.1	Hz to 50.0 Hz			
		Points per decade	5				
		Number of Sweeps	1				
		Test Settings	Post T	est Conditions			

Programming Frequency Sweep on Q800

Mode: DMA Multi-Frequency-Strain

Summary	Procedure	Notes					. 6	Summary	Proce	edure N	otes			
Procedur	re Information	-						- Procedu	ure Info	rmation -				
Test	Isothermal T	emp / Freq (Sweep			•		Test	Isoth	ermal Ter	np / Freq Sweep)		•
Notes	Material is he deformed (os frequencies a	eld isotherma cillated) at a and the mec	ally at a user-sp constant ampli hanical properti	<u>ecified tem</u> tude (strain es measure	oerature. Th) over one o :d.	nen <mark>i</mark> tis ▲ ormore ▼		Notes	Mate deforr freque	rial is helo med (oscil encies an	l isothermally at a lated) at a const d the mechanica	a user-specified te ant amplitude (stra I properties measu	mperature iin) over c ired.	e. Then it is 🔺 me or more 🗖
- Frequenc	y Sweep —							Frequen	cy Tab	le —				
• An	nplitude :		25.0000	μη	I	Advanced		0	Single		🖲 Log	C Linear		C Discrete
O Str	rain :		0.0000	%		Post Test		Fred	Juency		0.10	to 10.00	– Hz	
Preloa	ad force:		0.0100	N					,			·~)		
🔽 Fo	orce track		125.	2	;			Poir	nts per i	decade:	5			
										Fred	juency			Refresh Table
Isotherma	al temperature	e:	35.00						1	0.10				
Soak tim	e:		5.00	min					2	0.16				
Number	of sweeps:		1	_					3	0.25				
			<u> </u>					-	4 5	0.40				
									6	1.00				
									7	1.60			-	
A								1	-	1				
\Method (Frequency Ta	able/					1	(Method	Freque	ency Tabl	e/			

Programming Frequency Sweep on RSA G2

Experiment 2								
Sample: PET film LN2 of	Sample: PET film LN2 only							
Geometry: Tension fixtu	Geometry: Tension fixture (rectangle)							
Procedure of 2 steps	Procedure of 2 steps							
 1: Conditioning Opt 2: Oscillation Frequence Environmental Contemporature Soak time Test Parameters Strain % Logarithmic sweet Frequency Points per decation 	ions Active, Enabled ency ontrol 25 60.0 0.5 p 0.1 de 5	°C s %	Inherit set point Wait for temperature					

Dynamic Temperature Ramp

 A linear heating rate is applied. The material response is monitored at a constant frequency and constant amplitude of deformation. Data is taken at user defined time intervals.

Recommend ramp rate for polymer testing: 1-5°C/min.

Temperature Step & Hold- Single /Multi-Frequency

 A step and hold temperature profile is applied. The material response is monitored at one, or over a range of frequencies, at constant amplitude of deformation

Time

Programming Temp Ramp/Sweep on DMA850

• Temp Ramp Example

Strain	0.05	%		
Frequency	1.0	Hz		
Initial/preload force	0.1	Ν		
✓ Use Force Track	125.0	%		
Use current temperature				
Ramp from	-100	°C to 200 °C		
Ramp rate	3.0	°C/min		
Soak times				
at Start temperature	300.0	s		
at End temperature	0.0	s		
Estimated time to complete 01:40:00 hh:mm:ss				

• Temp Sweep Example

Oscillation Y Temperature S	Sweep (Multif	frequency) \vee					
Strain	0.05	%					
Initial/preload force	0.1	Ν					
✓ Use Force Track	125.0	%					
Sweep from	-100	°C to 200 °C					
Temperature increment	10	°C					
Soak time	300.0	s					
Sweep Mode Logarithmic O Linea	Sweep Mode						
Frequency	0.1	Hz to 10.0 Hz					
Points per decade	5						

Note: Measurement can be done with single or multiple frequencies

Programming Temp Ramp/Step on Q800

Mode: DMA Multi-Frequency-Strain

• Temp Ramp Example

Summary Procedure Notes Procedure Information	Procedure Notes ure Information Image: Comparison of the state of					
Temperature Ramp / Single Frequency						
Amplitude :	25.0000	μm	Advanced			
C Strain :	0.0000	%	Post Test			
Preload force:	0.0100	N				
✓ Force track	✓ Force track 125. %					
Start temperature:	Use current					
·	-150.00					
Soak time	5.00	min				
Final temperature:	150.00					
Ramp rate:	3.00	*C/min				
Hold time at final temperature:	30.00	min				
Wethod /Frequency Table/						

• Temp Sweep Example

🗐 Sur	mmary Procedur	re 🧊 Notes					
Procedu	ure Information						
Test	Temp Step / Freq Sw	еер		•			
Notes	Material is exposed to a series of increasing isothermal temperatures. At each temperature, the material is deformed at a constant amplitude (strain) over one or more frequencies and the mechanical properties						
Method -							
⊙ A	mplitude :	15.0000	μm	Advanced			
O S	itrain :	0.0000	%	Post Test			
Prelo	oad force:	0.0100	N				
	Force track	125.	%				
Start ter	mperature:	-100.00	r				
Final ter	mperature:	250.00	°C				
Temper	ature increment:	10.00	°C				
Isothem	nal soak time	5.00	min				

Note: Measurement can be done with single or multiple frequencies

Programming Temp Ramp/Sweep on RSA G2

• Temp Ramp Example

Sample: PET film LN2 only							
Geometry: Tension fixture ((rectangle)						
Procedure of 2 steps			S = # #)				
 1: Conditioning Options Active, Enabled 							
 2: Oscillation Temperature Ramp 							
- Environmental Contro	ol						
Start temperature	-100]°C	Inherit set point				
Soak time	300.0	s	Wait for temperature				
Ramp rate	3.0	°C/min					
End temperature	200]°C					
Soak time after ramp	0	s					
Estimated time to con	nplete 01:40:00	hh:mm:ss					
Test Parameters							
Sampling interval	10.0 s	/pt	~				
Strain %	0.05 %	,	~				
Single point							
Frequency	1.0 H	z 🕶					
 Data acquisition 							
(Advanced							

• Temp Sweep Example

Proced	lure of 2 steps			5
	: Conditioning Options Ac	tive, Enabled		
 2 	: Oscillation Temperature	Sweep		
	Environmental Control -)
	Start temperature	-100	°C 🔄 Inherit	
	Soak time	300.0	s Wait for temperature	
	End temperature	200	°C	
	Temperature step	10	°C	
	Step soak time	300.0	s	
	Test Parameters			Ì
	Strain %	0.02	%	
	Logarithmic sweep		×	
	Frequency	0.1	to 10.0 Hz 🗸	
	Points per decade	5]	
	 Data acquisition 			

Note: Measurement can be done with single or multiple frequencies

Transient experiments

Creep Recovery Experiment

- A stress is applied to sample instantaneously at t_1 and held constant for a specific period of time. The strain is monitored as a function of time ($\gamma(t)$ or $\varepsilon(t)$).
- The stress is reduced to zero at t_2 and the strain is monitored as a function of time ($\gamma(t)$ or $\epsilon(t)$).

Programming Creep Recovery on a DMA850

📄 (E	[Experiment 1]							
-	* Sample:							
C	Clamp: Film Clamp							
e	* Stress Control 🗸 Creep Recovery 🗸 🛞 📮							
	Temperature	30	°C					
	Soak time	60.0	s					
	Preload force	0.01	N					
	Stress	500.0	Pa					
	Creep time	120.0	s					
	Recovery time	240.0	s					
	Data sampling mod	le						
	Sampling rate	1.0	pts/s					
	Test Settings	ost Test C	onditions					

Programming Creep Recovery on a Q800

Summary Procedure	Notes
Procedure	
Mode	DMA Creep 🔽
Test	Custom 🛒 🖽 🚅
Clamp / Sample Clamp	Custom Creep Creep TTS Single Lantilever
Sample Shape	rectangular (I, w, t)
Dimensions:	17.5000 mm 12.9000 mm 3.2000 mm
- Sample Information	n
Sample Name	Rynite 530 SC
Comments	
Data File	\\Demolab8-w2k\TA\Data\DMA\Smith\DuPont\Mimi\
Network Drive	8
☐ <u>S</u> tart Remotely ☐ <u>A</u> utoanalyze	
Analysis Macro	

Creep			
Preload force:	0.0010	N	Advanced
Stress:	1.0000	MPa	Post Test
		+ +	
Isothermal temperature:	25.00		
	33.00		
Soak time:	5.00	min	
Creep time:	10.00	min	
Recovery time:	20.00	min	

#	Running Segment Description		
1	📕 Data storage Off		
2	å ↑ Equilibrate at 35.00 °C		
3	↓→ Isothermal for 5.00 min	Ν	
4	📕 Data storage On	μŝ	
5	🛞 Displace 10.00 min recover 20.00 min		

Programming Creep Recovery on a RSA-G2

- A pre-test is required to obtain sample information for the feedback loop
- Stress Control Pre-test: frequency sweep within LVR

Programming Creep Recovery on a RSA-G2

Creep

Experime	ent 2]		
Samp	ble: PET film LN2 only		
Geon	netry: Tension fixture (rec	tangle)	
Proce	edure of 3 steps		- S - K K
\odot	1 · Conditioning Stress Cor	itral 30°C	
\bigcirc	2: Step (Transient) Creep		
	Environmental Control – Temperature Soak time Test Parameters Duration Tension Stress	30 °C □ Inherit set point 60.0 s 180.0 s Ompression 500.0 Pa	
	Sampling Number of points Steady state sensing Data acquisition Advanced	O Linear O Log	

Recovery

[Experime	nt 2]				
Samp	le: PET film LN2 only				
Geom	netry: Tension fixture (rec	tangle)			
Proce	dure of 3 steps			🐸 🖃 🛃 🎍	
🕑 1	L: Conditioning Stress Co	ntrol 30°C			
🕑 2	2: Step (Transient) Creep	30°C, 180s, 5	00Pa		
🔿 3	3: Step (Transient) Creep				
	Environmental Control – Temperature Soak time Test Parameters — Duration O Tension Stress	30 0 360.0 © Cc 0	C Inherit set point s Wait for temperature s ompression Pa		
	Sampling Number of points Steady state sensing Data acquisition	Linear 200	() Log		

- Stress: needs to be in the linear region
 - Creep time: until it reaches steady state
- Recovery time: until the compliance and strain reach plateau

Stress relaxation experiment

- Strain is applied to sample instantaneously (in principle) and held constant with time.
- Stress is monitored as a function of time $\sigma(t)$.

Programming Stress Relaxation on a DMA850

Sample:		
Clamp: Film Clamp		
Strain Control 🗵 Stress	Relaxation Y	😽 💆 📕
Temperature	50 °C	
Soak time	120.0 s	
Preload force	0.01 N	
Strain	1.0 %	
Relaxation time	600.0 s	
Recovery time	0.0 s	
Data sampling mod	e	
● Linear ○ Log		
O	1.0 pts/s	

Programming Stress Relaxation on a Q800

Su	immary Procedure	Notes
[Procedure	
	Mode	DMA Stress Relaxation 💽 🗹
	Test	Custom 🗾 🛄 🖻
	Classa I Cassala	Custom
	- Clamp / Sample -	Stress Relaxation
	Clamp	Single Lantilever
	Sample Shape	rectangular (I, w, t)
	Dimensions:	17.5000 mm 12.9000 mm 3.2000 mm
[- Sample Information	on
	Sample Name	Rynite 530 SL
	Comments	
	Data File	\\Demolab8-w2k\TA\Data\DMA\Smith\DuPont\Mimi\
	Network Drive	
	<u>Start Remotely</u> Autoanalyze	
	Analusis Macro	
	- mayere maero	

0.0010 N	Advanced
0.0010 ×	Post Test
10.1000	
35.00	°C
5.00	min
10.00	min
0.00	min
10.00	
	0.0010 N 0.1000 % 35.00 5.00 10.00 0.00

 #
 Running Segment Description

 1
 ☐ Data storage Off

 2
 ↑ Equilibrate at 35.00 °C

 3
 1 Isothermal for 5.00 min

 4
 ☐ Data storage On

 5
 ③ Displace 10.00 min recover 0.00 min

Programming Stress Relaxation on a RSA-G2

2: Step (Transient) Stress Relaxation

Advanced

 \wedge

- Environmental Control -			
Temperature	50	°C	Inherit set point
Soak time	120.0	S	Wait for temperature
- Test Parameters			
Duration	300.0	S	
Tension	00	ompression	н — — — — — — — — — — — — — — — — — — —
Strain %	1.0	%	~
Sampling	OLinear	۲	Log
Number of points	300		
 Data acquisition 			

141

Iso-strain/Iso-stress Temperature Ramp

- The strain or stress is held at a constant value and a linear heating rate is applied.
- Valuable for assessing mechanical behavior under conditions of confined or fixed load (stress) or deformation (strain).
- Example: Measure sample shrinkage (length shrinkage or shrinking force)

TA

Iso-Strain/Iso-Stress on a DMA850

- DMA Iso-strain
- Hold strain constant and measure sample shrinking force

Test Settings

× c	lamn: Film Clamn			
	Charin Control .v. Too Charin .v			
~ _ :	Strain Control • IsoStrain •			
	Preload force	0.01	N	
	Displacement	20.0	μm	
	Sampling rate	1.0	pts/s	
	Use current temperat	ure		
	Ramp from	25	°C to	150 °C
	Ramp rate	3.0	°C/min	
	Soak times			
	at Start temperature	300.0	s	
	at End temperature	0.0	s	
	Estimated time to comp	lete ()0:41:40	hh:mm:ss

Post Test Conditions

- DMA lso-stress
- Hold stress constant and measure sample dimension change

*								
*	Stress Control V IsoStress V							
	Preload force 0.01 N							
	Stress 500.0 Pa							
	Sampling rate 1.0 pts/s							
	Use current temperature							
	Ramp from 25 °C to 150 °C							
	Ramp rate 3.0 °C/min							
	Soak times							
	at Start temperature 300.0 s							
	at End temperature 0.0 s							
	Estimated time to complete 00:41:40 hh:mm:ss							

Test Settings

Post Test Conditions

143

Iso-Strain/Iso-Stress on a Q800

- DMA Iso-strain
- Hold strain constant and measure sample shrinking force
- Only works with film-tension clamp on the Q800

🗐 Sum	mary Procedure	Notes					
Procedure Information							
Test	Isostrain						
Notes	A constant deformation (strain) is applied to the sample and the force (stress) required to maintain that deformation is monitored while ramping temperature.						
– Isostrain –							
Preload force:		0.0010	N Advanced				
Strain:		0.1000	%				
Start tem Final tem Ramp rat	perature: perature: e:	✓ Use current 35.00 250.00 3.00 3.00	°C °C °C/min				

- DMA Control force
- Hold force constant and measure sample dimension change

🗐 Sur	mmary Procedure	Notes					
Procedure Information							
Test	Temp Ramp / Controlled	Temp Ramp / Controlled Force					
Notes	Material is exposed to a specific stress (force) and the resultant strain (dimension change) is monitored while the temperature is ramped at a constant linear rate.						
Temperature Ramp / Controlled Force							
Preloa	ad force:	0.0100	N	Advanced			
				Post Test			
L							
Start te	mperature:	25.00	°C				
Final te	mperature:	200.00	°C				
Ramp r	ate:	3.0	°C/min				
Iso-Strain/Iso-Stress on a RSA G2

- DMA Iso-strain
- Hold strain constant and measure sample shrinking force

Sample: PET film LN2 only								
Geometry: Tension fixture (rectangle)								
O Procedure of 1 step								
1: Other Temp Ramp IsoStrain								
	Environmental Control							
	Start temperature	20	°C	Inherit set point				
	Soak time	s	✓ Wait for temperature					
	Ramp rate	3.0	°C/min					
	End temperature	200	°C					
	Soak time after ramp	0	s					
	Estimated time to complete	01:00:00	hh:mm:ss	•				
	Test Parameters							
	Sampling rate 1	.0 p	ts/s	~				
	 Tension 							
	Strain % 0	.1 2	6	~				
	Maximum force	20.0	N					

Data acquisition

- DMA Iso-force
- Hold stress constant and measure sample dimension change

Sample: PET film LN2 only							
Geome	etry: Tension fixture (rectang	jle)					
Proced	dure of 1 step				💴 🔛 🥠		
1	: Other Temp Ramp IsoForce	e					
	Environmental Control						
	Start temperature	20)°C	Inherit	t set point		
	Soak time	180.0	s	✓ Wait for temperature			
	Ramp rate	3.0	°C/min				
	End temperature	200	°C				
	Soak time after ramp	0	s				
	Estimated time to complete	01:00:00	hh:mm:ss				
	Test Parameters						
	Sampling rate 1	.0 p	ts/s		~		
	Motor direction)Tension	Compres	sion			
	Constant axial force 0	.01 N			~		
L	Data acquisition						

Stress-Strain Testing

- Sample is deformed under a constant linear strain rate, Hencky strain rate, force, or stress for generating more traditional stress-strain curves.
- Measure sample's Young's modulus, yield stress, strain hardening effect and sample fracture

Strain/Stress Ramp on a DMA850

Strain Ramp

¥ Sam	ple:						
* Rat	Rate Control V Strain Ramp V						
-	Temperature 25 °C]					
	Soak time 300.0 s						
1	Preload force 0.01 N						
6	Inherit starting displacement						
	Ramp fromInheritedμmto100.0μm						
	Ramp rate 20.0 μm/min						
	Data sampling mode						
	● Linear ○ Log						
	Sampling rate 1.0 pts/s						
	Test Settings Post Test Conditions						

Stress Ramp

×	× Sample:								
*	Rate Control V Stress Ramp V								
	Temperature	25	°C						
	Soak time	300.0	s						
	Preload force 0.01 N								
	Inherit starting for	✓ Inherit starting force							
	Ramp from	Inherited	N to 5.0 N						
	Ramp rate	Ramp rate 1.0 N/min							
	Data sampling mode	е							
	● Linear 🔾 Log	● Linear ◯ Log							
	Sampling rate	Sampling rate 1.0 pts/s							
	Test Settings Post Test Conditions								

Strain/Stress Ramp on a Q800

- DMA strain rate mode
- Strain ramp
- Displacement ramp

- .								
lest	Displacement Ramp							
Notes	Sample is exposed to temperature is held iso	a constant rate of di othermal.	splacement while th	e ^				
)isplace	ment Ramp							
Preloa	ad force:	0.01	Ν	Advanced.				
O Initial Strain :		1.0000	1.0000 %					
🖲 Ini	itial Displacement :	0.0010	μm					
Isother	mal temperature:	35.00	°C					
Displacement Rate:		2000.00	µm/min					
Final Di	isplacement:	10000.0	μm					

- DMA control force mode
- Force ramp

Procedure information			
Test Stress / Strain			-
Notes Sample is exposed to deformation (strain) is	a ramped force (stres monitored. Temperat	s) and the resultan ture is held isother	nt A mal.
Stress - Strain			
Preload force:	0.01	0.01 N	
			Post Test.
	50.00		
Isothermal temperature:	50.00	č	
lsothermal temperature: Soak time:	50.00 5.00	min	
Isothermal temperature: Soak time: Force ramp rate:	50.00 5.00 1.0	min N/min	

Strain Ramp on a RSA G2

• Linear strain rate

Samp	le: PET film LN2 only				
Geor	netry: Tension fixture (rec	tangle)			
Proce	dure of 1 step				💛 🖯 🥴 🛦
 Image: A set of the set of the	1: Other Axial				
	Environmental Control -				
	Temperature	30	°C	Inherit set point	
	Soak time	60.0	s	Wait for temper	ature
	Test Parameters				
	Duration	120.0	s		
	Motor direction	Tension		Compression	
	Constant linear rate	1.0	mm/s		~
	Maximum gap change	15.0	mm		_
	Sampling	💿 Linear	0	Log	
	Sampling rate	1.0	pts/s 💊	•	

Data acquisition

Save image

• Hencky strain rate

Sampl	e: PET film LN2 only				
Geom	etry: Tension fixture (rect	tangle)			
Proces	lure of 1 step				S 🚽 🛃 🆋
1	: Other Axial				
	Environmental Control —				
	Temperature	30	°C	Inherit set point	
	Soak time	60.0	s	Wait for temperature	e
	Test Parameters				
	Duration	120.0	s		
	Motor direction	Tension		Compression	
	Hencky strain rate	1.0	1/s	~	
	Maximum gap change	15.0	mm		,
	Sampling	Linear		CLog	
	Sampling rate	1.0	pts/s	3	

Additional resources for experimental setup

Getting Started Manuals on your desktop

TA

TA Instruments

Discovery DMA 850 Manuals

To view the desired manual using Acrobat Reader, click the name in the list below:

TA Manual Supplement (Contains important information applicable to all manuals.)

Instrument Documentation

Discovery DMA 850 Getting Started Guide

Accessory Documentation

Air Chiller System (ACS) Getting Started Guide DMA-RH Accessory Getting Started Guide Gas Cooling Accessory (GCS) Getting Started Guide Nitrogen Purge Cooler (NPC) Getting Started Guide

Software Documentation

What's New in TRIOS Software Installing TRIOS Software

Issued February 2020

Site Preparation Guides and Installation Requirements Discovery DMA 850 Site Preparation Guide

Additional Information DMA Clamping Factors for Compression Clamps

TA Instruments

RSA-G2 Manuals

To view the desired manual using Acrobat Reader, click the name in the list below:

TA Manual Supplement (Contains important information applicable to all manuals.)

Instrument & Accessory Documentation

RSA-G2 Getting Started Guide RSA-G2 FCO Camera Kit Installation Guide RSA-G2 LN2 Kit Installation Guide RSA-G2 Chiller Panel Kit Installation Instructions RSA-G2 Dielectric Accessory Getting Started Guide ACS Getting Started Guide - UPDATED

Software Documentation What's New in TRIOS Software Installing TRIOS Software Configuring a New Geometry in TRIOS Software

Miscellaneous Documentation RSA-G2 Site Preparation Guide

Guide

Guide

RMX File Utilities

To view the desired manual using Acrobat Reader, click on the name in the list below: TA Manual Supplement (Contains important information applicable to all manuals)

Instrument & Accessory Manuals

Software Manuals

Q Series[™] Instrument Control Getting Started Guide

Advantage Integrity[™] Getting Started

Specialty Library Getting Started Guide

Tzero[®] PDSC Getting Started Guide Universal Analysis Getting Started DSC Q Series[™] Getting Started Guide

RCS Getting Started Guide LNCS Getting Started Guide

PCA Getting Started Guide DSC Pressure Cell Getting Started Guide

DSC High Pressure Capsule Kit

DSC High Volume Pan Kit

DSC Circulator-Based Cooling System TGA Q5000 IR Getting Started Guide

Miscellaneous Documents Installing/Updating Advantage[™]

TGA Q Series[™] Getting Started Guide Updating Q Series[™] Instrument TGA Hi-Res[™] Option

Software

DMA Q Series[™] Getting Started Guide New Features in Advantage Q Series[™] GCA Getting Started Guide DMA Humidity Accessory Getting Started New Features in

Advantage Integrity[™] SDT Q Series[™] Getting Started Guide

TA Update TMA O Series[™] Getting Started Guide MCA Getting Started Guide

MCA70 Getting Started Guide

TÀ

Q5000 SA Getting Started Guide

Trios and Advantage Help

Instructional Videos

From <u>www.tainstruments.com</u> click on Videos, Support or Training

🔀 info@tainstrume	nts.com	\$ 302-427-4000		👙 🕂 🤨 Language selector		Training News & Ever
Instruments	Product	ts ~ About TA Instrume	nts ~ Videos ~ Su	ipport ~ Training ~ I	News & Events ~ Caree	Initial Installation & Training
		Service Support	Application Support	Soft vare Downloads & Support	Support Plans	Course Schedule
		Service Support Helpline	Applications Support		Lifetime Support Plan	
	in	Installation	Helpline Tech Tips	Downloads	Premium Support Plan	Training Courses >
		Requirements & Repairs	recir rips	software	Plus Support Plan	
	The IQ/ Offering	The IQ/OQ Product Offering	Applications Notes Library	Software Sorted by	Basic Support Plan	 ElectroForce Training
		Calibration with Certified Standards	Training	Report a Bug	Performance Maintenance Visit (PMV)	Stratagiaa far Battar Data
		Safety Data Sheets		Request a Feature	Academic Support Plan	Strategies for Better Data
		Supported Instruments				
						 Training FAQ

Select Videos for TA Tech Tips, Webinars and Quick Start Courses

See also: <u>https://www.youtube.com/user/TATechTips</u>

Instructional Video Resources

Quickstart e-Training Courses

Web based e-Training Courses

TA Instruments offers a variety of training opportunities via the Internet. e-Training opportunities include the following:

QUICKSTART e-TRAINING COURSES

QuickStart e-Training courses are designed to teach a new user how to set up and run samples on their analyzers. These 60-90 minute courses are available whenever you are. These pre-recorded courses are available to anyone at no charge. Typically these courses should be attended shortly after installation.

Contact Us for Web based e-Training Courses

https://www.tainstruments.com/videos/quick-start-guides/

Instructional Video Resources

Quickstart e-Training Courses

Web based e-Training Courses

TA Instruments offers a variety of training opportunities via the Internet. e-Training opportunities include the following:

QUICKSTART e-TRAINING COURSES

QuickStart e-Training courses are designed to teach a new user how to set up and run samples on their analyzers. These 60-90 minute courses are available whenever you are. These pre-recorded courses are available to anyone at no charge. Typically these courses should be attended shortly after installation.

Contact Us for Web based e-Training Courses

https://www.tainstruments.com/videos/quick-start-guides/

- For additional questions:
- Email: rheologysupport@tainstruments.com
- Please put Online Training Questions in the subject line
- Link to download the presentation:

https://www.tainstruments.com/online-training-coursedownloads/

