

ers
Typical Use
Tubing, Connectors and Bottles, Plastic Surgery Implants
Disposable Syringes, Connectors, Finger-joint Prostheses, Nonabsorbable Sutures
Vascular Graft Prostheses, Heart Patches, Retinal Detachment Treatment
Disposable Laboratory Items
Bone Cement, Artificial and Implanted Teeth, Denture Materials and Fillings, Intraocular Lens
Disposable Medical Items, Blood Tubing Line, Cardiac Catheters, Artificial Limb Materials
Plastic Surgery Implants, Artificial heart and Heart-assist Pump Materials, Atrioventricular Shun Finger-joint Repair
Membrane for dialysis
Balloon for Intra-aortic Pump, Heart Valve Prostheses, Tubing
Drug-delivery System
Nonabsorbable sutures, Tendon prosthesis, Drug-delivery System, Tracheal Tubes
Tendon and Ligament Reconstruction, Tracheal Replacement, Surgical Mesh Fabric
Contact Lenses, Wound Dressings, Ophthalmic Implants, Drug-delivery System

A Heat Cool Ramp Method

- 1) Ramp 10 °C/min to -90 °C or Equilibrate to -90 °C*
- 2) Ramp 10°C/min to 200°C
- 3) Ramp 10 ℃/min to -90 ℃ or Equilibrate to -90 ℃*
- 4) Ramp 10 ℃/min to 200 ℃
- Start test at least 30 °C below the expected Tg
- End test at least 50°C above the expected Tg for amorphous solids; stay below the decomposition temperature
- Increase heating rate and/or mass if Tg is barely detectable; this increases sensitivity

TA' | TAINSTRUMENTS.COM

- 9 10:15am: Thermal analysis and stability of biomaterials
- 10:15-10:30am: Break
- 10:30-noon: Using rheology to characterize flow and viscoelastic properties of hydrogels, adhesives and biopolymers
- 12-1pm: Lunch
- 1-2:15pm: Mechanical testing of medical devices
- 2:15-2:30 break
- 2:30-3:15pm: Mechanical testing of engineered tissues and biomaterials
- 3:15-4pm Q&A with TA Instruments Applications Engineers

TA' | TAINSTRUMENTS.COM

