Exploring new ways to solve old problems; the hunt for a replacement to the 80°C self-heat test

Ruth Tunnell

9 October 2018



## 80°C self-heat test









# **Extreme Heat Flow Calorimetry**







# **Extreme Heat Flow Calorimetry**





# Typical extreme HFC results





#### Aims

- Could "extreme HFC" replace the 80°C self-heat test?
- Can extreme HFC detect changes upon ageing for a particular nitrate ester based propellant?



# Samples

| Sample       | Details                                                                                                              | Form of sample                                   |
|--------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Propellant A | Simple nitrate ester containing propellant                                                                           | Propellant swarfed into small needle like flakes |
| Propellant B | Simple nitrate ester containing propellant which has been deliberately designed to be unstable for research purposes | Small grains                                     |
| Propellant C | Complex hybrid nitrate ester containing propellant                                                                   | Chopped into small cubes                         |
| Tetryl       | NATO grade tetryl                                                                                                    | Coarse powder                                    |



# Ageing of propellant C

| Ageing time at 80°C | Notes                                                                                                                                                                                                       |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 days              | Propellant aged in insolation. No extreme HFC                                                                                                                                                               |
| 7 days              | Propellant aged with boron potassium nitrate (BPN) but the two materials were kept separate from each other as they were in individual glass vials and separated by a distance of about 2cm. No extreme HFC |
| 14, 21 and 28 days  | Propellant aged in insolation                                                                                                                                                                               |
| 14, 21 and 28 days  | Propellant aged with BPN but the two materials were kept separate from each other as they were in individual glass vials and separated by a distance of about 2cm                                           |



# Extreme HFC at 80°C results – propellant A





# Extreme HFC at 80°C results – propellant B





# Extreme HFC at 80°C results – propellant C





# Summary of 80°C data

| Sample       | Time to maxima of first thermal event (days) | 80°C self-heat test result (days) |
|--------------|----------------------------------------------|-----------------------------------|
| Propellant A | 70.0, 65.0                                   | 63.8, 63.8                        |
| Propellant B | 43.1, 43.5                                   | 40 ± 2                            |
| Propellant C | 63.7, 67.5                                   | 61.0 - 64.2                       |



# Extreme HFC at 120°C and 115°C results – propellant A

| Time to maxima of first thermal event at 120°C (hours) | Time to<br>maxima of first<br>thermal event<br>at 115°C<br>(hours |
|--------------------------------------------------------|-------------------------------------------------------------------|
| 5.5, no result                                         | 19.6, 30.3                                                        |





# Extreme HFC at 120°C and 115°C results – propellant B

| Time to maxima of first thermal event at 120°C (hours) | Time to<br>maxima of first<br>thermal event<br>at 115°C<br>(hours |
|--------------------------------------------------------|-------------------------------------------------------------------|
| 3.0, 3.2                                               | 6.9, 6.8                                                          |





### Extreme HFC at 120°C and 115°C results – propellant C

Time to maxima of first thermal event at 120°C thermal event at 115°C (hours)  $3.10 \pm 0.10$   $3.10 \pm 1.34$ 





# Comparison of all results





# Comparison of all results

| Propellant | Apparent activation energy (kJMol <sup>-1</sup> ) |
|------------|---------------------------------------------------|
| A          | 153 (all data)                                    |
|            | 135 (excluding                                    |
|            | 120°C data)                                       |
| В          | 166                                               |
| С          | 170                                               |

$$K = Ae \frac{-EA}{RT}$$





# Predicted time vs measured time to decomposition at 80°C

| Sample       | Predicted time to decomposition at 80° C (hours) | Measured time to decomposition at 80° C (hours) |
|--------------|--------------------------------------------------|-------------------------------------------------|
| Propellant A | 4040                                             | 1562                                            |
| Propellant B | 857                                              | 1039                                            |
| Propellant C | 1723                                             | 1574                                            |



# Extreme HFC – aged Propellant C samples





# Extreme HFC – summary of aged Propellant C samples data





# Aged propellant C samples – stabiliser content





pNMA and NNSpNMA

2-NDPA and NNS-2-NDPA



# Extreme HFC results - tetryl





#### Conclusions

- Extreme HFC can determine the thermal stability of nitrate ester based propellants
  - The results from the extreme HFC tests compare well with the data from the 80°C self-heat test
- Full decomposition of materials such as tetryl can be followed but technique did not identify any differences between samples and gas generation was an issue
- Extreme HFC can detect changes upon ageing in a particular propellant
  - Additional research is required on a greater range of propellants to confirm this.
  - Trials should be conducted to see if extreme HFC can be conducted at 115°C rather than 80°C in order to increase the throughput of samples using this technique
  - The influence on the form of a sample on the results from extreme HFC should also be investigated
- Extreme HFC shows great promise as potential replacement techniques for the 80°C self-heat test.
  - Future work should concentrate on determining if this is the case for a range of nitrate ester based compositions in the UK inventory



## Acknowledgments

- The authors would like to thank Tracy Vine (QinetiQ) for the initial funding of this research. The UK MOD are also acknowledged for their funding
- Roz Dale and Paul Davis are thanked for the HPLC data



# QINETIQ