Materials Characterization by Thermal Analysis (DSC & TGA), Rheology, and Dynamic Mechanical Analysis (Part 2)

Sarah Cotts, Charles Potter & Don DiPietro Applications Scientists & Sales Representative

Afternoon Agenda: Rheology and DMA

Introduction to Rheology

- Fundamentals of Stress, Strain and Shear Rate
- Instrumentation
- Geometries
- Flow Testing
 - Shear Thinning and Shear Thickening
 - Thixotropy
 - Yield Stress
- Oscillation Testing
 - Viscoelasticity
 - "Hands On" demonstration
 - Characterizing Thermoplastics

Thermosets and Gels

- Viscoelastic properties of Gels
- Characterizing Gelation
- Experimental considerations
- Specialized Accessories
- Dynamic Mechanical Analysis
 - Characterizing Glass Transition
 - Comparison of Deformation Modes
- •Case Study:
 - Rubber Characterization using DSC, TGA and DMA.

What is Rheology?

Rheology is the study of **flow** and **deformation**.

© TA Instruments

Rheology: the study of flow and deformation

Viscosity

- Non-Newtonian Viscosity
 - Shear thinning
 - Shear thickening
 - Thixotropy
 - Yield Stress
- Viscosity under processing conditions

Modulus

- Measure viscoelastic properties
 - Storage Modulus
 - Loss Modulus
 - Tan Delta
- Changes with time, temperature

Discovery Hybrid Rheometer Technology

ARES G2: Separate Motor and Transducer

Torque Transducer maintains the null position as the sample is deformed.

Sample torque to be measured directly, without contributions from motor friction or inertia.

Normal Force Transducer provides highly accurate normal force measurements

High stiffness for precise gap control.

Direct Drive motor applies accurate and precise rotational deformation, without contributing to measured torque.

Torsion Flow in Parallel Plates

 $\begin{aligned} r &= \text{plate radius} \\ h &= \text{distance between plates} \\ M &= \text{torque } (\mu \text{N.m}) \\ \theta &= \text{Angular motor deflection (radians)} \\ \Omega &= \text{Motor angular velocity (rad/s)} \end{aligned}$

Stress (σ) $\sigma = \frac{2}{\pi r^3} \times M$ Strain (γ) $\gamma = \frac{r}{h} \times \theta$ Strain rate ($\dot{\gamma}$) $\dot{\gamma} = \frac{r}{h} \times \Omega$

Geometry Options

Choosing a Geometry Size

- Assess the 'viscosity' of your sample
- Select diameter appropriate for viscosity of sample
 - Low viscosity (milk) 60mm geometry
 - Medium viscosity (honey) 40mm geometry
 - High viscosity (caramel) 20 or 25mm geometry
- Examine data in terms of torque/displacement/speed and modify geometry choice to move into optimum working range

Correct Sample Loading

Shear Rate varies across a Parallel Plate

 For a given angle of deformation, there is a greater arc of deformation at the edge of the plate than at the center

 $\gamma = \frac{dx}{h}$ dx increases further from the center, h stays constant

Single-point correction for the parallel plate geometry (0.76 radius) [M.S. Carvalho, M. Padmanabhan and C.W. Macosko, *J. Rheol.* 38 (1994) 1925-1936]

© TA Instruments

Shear Rate is Uniform across a Cone

The cone shape produces a smaller gap height closer to the center, so the shear on the sample is constant

$$\gamma = \frac{dx}{h}$$

h increases proportionally to dx, γ is uniform

Limitations of Cone and Plate

Gap must be > or = 10 [particle size]!!

What Geometry should we use?

Should have used a parallel plate!

When to Use Concentric Cylinders

Peltier Concentric Cylinder

- Low to Medium Viscosity Liquids
- Unstable Dispersions and Slurries
- Minimize Effects of Evaporation
- Easy Sample Loading
- Weakly Structured Samples (Vane)
- Low Shear Rates

Geometry Summary

Parallel Plates	Cone and Plate	Concentric Cylinders
1-2 mL	50-500 μL	7-25 mL
Liquids, gels, soft solids, dispersions, etc.	Unfilled liquids, isothermal tests	"Pourable" liquids, low viscosities, dispersions
Used for all samples. Roughened surfaces available to prevent slip.	Most accurate measurement of non- Newtonian Viscosity, small sample volume.	Least effected by sample loading technique or evaporation.

Flow Testing

Newtonian and Non-Newtonian Fluids

 Newtonian Fluids - Viscosity does not change with changes in shear rate or time.

(examples: water, oil, honey)

 Non-Newtonian Fluids - Viscosity is time or shear rate dependent

(examples: mayonnaise, paint, polymer, asphalt)

- Shear Thinning: viscosity decreases as shear rate increases
- Shear Thickening: viscosity increases as shear rate increases.

Viscosity of Honey and Mayonnaise

Viscosity is curve, not a single value!

Viscosity Flow Curve

shear rate (1/s)

General Viscosity Curve for Suspensions

 $\log \dot{\gamma}$

Reference:Barnes, H.A., Hutton, J.F., and Walters, K., <u>An Introduction to Rheology</u>, Elsevier Science B.V., 1989. ISBN 0-444-87469-0

Flow Curve for Suspensions

TAINSTRUMENTS.COM

Viscosity vs. Shear Rate- Shampoo

Viscosity vs. Shear Rate- Shampoo

Viscosity of Water: effect of geometry

Wall Slip

No slip condition

Ideal, Assumed Velocity Profile

- Can manifest in many ways:
 - Apparent Double Yielding
 - Low Yield Stress
 - Low Viscosity
 - High tan δ
- Test by running the same experiment at different gaps
- For samples that don't slip, the results will be independent of the gap
- Can happen with any geometry: plate, cone, concentric cylinder, etc...

Wall Slip Incorrect Velocity Profile

Yield Stress Measurements on Toothpaste

Edge Failure

- Results in apparent drop in viscosity
- Remedy: decrease gap to increase stabilizing influence of surface tension

Shear Thinning or Sample Instability?

Thixotropy

The thixotropy characterizes the time dependence of reversible structure changes in complex fluids. The control of thixotropy is important to control:

- process conditions; for example, to avoid structure build up in pipes during rest periods
- sagging and leveling; gloss of paints and coatings

Thixotropy of Paint

© TA Instruments

Thixotropic Loop-Mayonnaise

Thixotropic Material

- Up and down rate ramps do not superimpose
- Area under the curve is a measure of thixotropy

What is Yield Stress?

- Some Structured Fluids behave like "solids" at rest.
- A critical stress must be applied for these materials to flow.
- •What does Yield Stress do?
 - Stabilize against sedimentation of separation
 - Improve ease of use
 - Prevent dispensing of product

Yield Stress- Ketchup

Paint Formulations- Yield Stress

Yield Stress: Orange Juice

Yield Stresses of Protein Solutions

Protein Solutions: Low Torque Sensitivity

Understanding Torque

- •What is a **N.m**?
 - An apple (about 150 g) on the end of a meter stick
 - 1.5 N.m
- •What is a **µN.m**?
 - A grain of salt (about 0.5 mg) on the end of a meter stick)
 - **5 μN.m**

•And a **nanoN.m**?

- A speck of dust (1 µg) on the end of a meter stick
- 10 nanoN.m

Oscillation

What is Oscillation?

Dynamic stress applied sinusoidally User-defined Stress or Strain amplitude and frequency

Oscillation Testing

- An oscillatory (sinusoidal) deformation is applied to a sample.
- The material response (stress) is measured.
- The phase angle δ , or phase shift, between the deformation and response is measured.

Oscillation Testing: Response for solids and liquids

Oscillation Testing: Viscoelastic Material

Viscoelastic Parameters

<u>The Modulus:</u> Measure of materials overall resistance to deformation.

<u>The Elastic (Storage) Modulus:</u> Measure of elasticity of material. The ability of the material to store energy.

<u>The Viscous (loss) Modulus:</u> The ability of the material to dissipate energy. Energy lost as heat.

<u>Tan Delta:</u>

Measure of material damping such as vibration or sound damping.

$$G^* = \left(\frac{\text{Stress}^*}{\text{Strain}}\right)$$

$$G' = \left(\frac{\text{Stress}^*}{\text{Strain}}\right)\cos\delta$$

$$G'' = \left(\frac{Stress^*}{Strain}\right) \sin \delta$$

$$\tan \delta = \left(\frac{G'}{G'}\right)$$

Storage and Loss of a Viscoelastic Material

Viscoelasticity Defined

Range of Material Behavior Liquid Like----- Solid Like Ideal Fluid ----- Most Materials -----Ideal Solid Purely Viscous ----- Viscoelastic ----- Purely Elastic

Viscoelasticity: Having both viscous and elastic properties

 Materials behave in the linear manner, as described by Hooke and Newton, only on a small scale in stress or deformation.

Oscillation Testing- Linear Viscoelastic Region

Strain (amplitude)

Time-Dependent Viscoelastic Behavior

- •Short deformation time: pitch behaves like a solid
- •Long deformation time: pitch behaves like a highly viscous liquid
 - 9th drop fell July 2013

Started in 1927 by Thomas Parnell in Queensland, Australia

http://www.theatlantic.com/technology/archive/2013/07/the-3-most-exciting-words-in-science-right-now-the-pitch-dropped/277919/

Time-Dependent Viscoelastic Behavior

Viscoelastic Putties

•Compare with your neighbors!

•How do these differ in their rheology?

- Viscosity
- Modulus
- Phase angle
- Relaxation Time
- •How can you test it?
 - "Manual Rheology"
 - With a Rheometer

Influence of Molecular Weight on G' and G"

The intersection of G' and G" shifts to lower frequency as MW increases.

INSTRUMENTS.COM

Influence of MWD on G' and G"

FAINSTRUMENTS.COM

Influence of MW on Viscosity

The zero shear viscosity increases with increasing molecular weight. TTS is applied to obtain the extended frequency range.

AINSTRUMENTS.COM

Melt Rheology: MW Effect on Zero Shear Viscosity

- Sensitive to Molecular Weight, MW
- For Low MW (no Entanglements) η_0 is proportional to MW
- For MW > Critical MW_c, η_0 is proportional to MW^{3.4}

Ref. Graessley, Physical Properties of Polymers, ACS, c 1984.

Idealized Flow Curve – Polymer Melts

Viscosity Measurements of LDPE at 190°C

High MW Contributions

Macosko, TA Instruments Users' Meeting, 2015

Example: Surface Defects during Pipe Extrusion

Tack and Peel of Adhesives

- Bond strength is obtained from peel (fast) and tack (slow) tests
- Tack and Peel are a function of viscoelastic properties at different frequencies

Tack and Peel performance of a PSA

Thermosets and Gels

What is a Gel?

 A soft solid that contains a polymeric network and a substantial fraction of solvent

- Latin: gelatus (frozen; immobile)
- •"A substantially dilute crosslinked system that exhibits no flow in the steady state."
 - J.D. Ferry, Viscoelastic Properties of Polymers, 1980.
- •Chemical Gel: covalent network
- Physical Gel: non-covalent network
- Hydrogel: network with significant water content

Gelation

Physical, Chemical and Biological Hydrogels

E.S. Place, J.H. George, C.K. Williams, M.M. Stevens, Chem. Soc. Rev. 2009, 38, 1139–1151

Viscoelastic Properties: "Is it a Gel?"

Y. He, P. G. Boswell, P. Bühlmann, T. P. Lodge, J. Phys. Chem. B, <u>111</u>, 4645, (2007) CTA

Sample Preparation

Isothermal Gelation: Hyaluronic Acid Gels

- Hyaluronic acid gels are used as lubricating agent during abdominal surgeries to prevent adhesion and also for join lubrication, wound healing etc.
- Rheology can monitor gelation and evaluate gel

Complex viscosity n*

(Pa.s)

10

101

100

10

10-2

10-3

0

(Pa) 🔵

Loss modulus G"

Storage modulus G' (Pa) 🔘

Rapid Gelation of 2-component system

- Experimental Challenge:
 - 2 components form a gel upon contact
 - Used to create small encapsulating beads and drug delivery devices.
- Upon mixing, gelation occurs in seconds and cannot be easily loaded.
- Decreased temperature to delay gelation.

Characterizing short Gel Time

© TA Instruments

Thermo-Reversible Gelation: Gelatin

UV-Cured Hydrogels

- Widely used systems
 - 3D curing
 - Photolithography
 - On-demand gelation
- UV accessory attachment for Rheometer
 - Allows for in-situ gelation and optimum measurement of modulus.
 - Characterize gelation kinetics with controlled:
 - irradiance
 - wavelength
 - exposure time
 - temperature

UV Gelation, 365 nm LED

Powder Coating: Cure Test

Cure Testing- Dimensional Change

Change in Mechanical Properties During Drying

- Relative Humidity and Temperature Controlled Chamber
- Quantitative measurement of modulus during drying of the bulk material.
- Characterize time of drying
 - Time needed to "set" (Crossover point)
- Determine conditions needed to achieve drying
- Test Method: constant temperature and humidity

Example: Glue Drying under Different Humidity

Moisture-Cured System- Humidity Control

Dynamic Mechanical Analyzers

Is DMA Thermal Analysis or Rheology?

Thermal Analysis

measurement as a *function of temperature or time*.

Rheology

- the science of *stress* and *deformation* of matter.
- DMA mechanically deforms a sample and measures the sample response. The response to the deformation can be monitored as a function of temperature or time.

DMAs from TA Instruments

Q800

DMAs from TA Instruments

RSA G2 Separate Motor & Transducer

DMA850 and Q800

Combined Motor & Transducer

DMA Mode on DHR and ARES-G2

DMA Q800: Schematic

RSA G2 Schematic: Dual Head Design

DMA Viscoelastic Parameters

<u>The Modulus:</u> Measure of materials overall resistance to deformation.

<u>The Elastic (Storage) Modulus:</u> Measure of elasticity of material. The ability of the material to store energy.

<u>The Viscous (loss) Modulus:</u> The ability of the material to dissipate energy. Energy lost as heat.

Tan Delta:

Measure of material damping - such as vibration or sound damping.

$$E^* = \left(\frac{Stress^*}{Strain}\right)$$

$$\mathbf{E'} = \left(\frac{\mathbf{Stress}^*}{\mathbf{Strain}}\right)\cos\delta$$

$$E'' = \left(\frac{Stress^*}{Strain}\right) \sin \delta$$

$$\tan \delta = \left(\frac{E'}{E'}\right)$$

Dynamic Temperature Ramp

Temperature

Dynamic Mechanical Analysis of Glass Transition

- •DMA more sensitive to Tg than DSC, directly measures changes in mechanical and viscoelastic properties as a function of temperature.
- Materials whose glass transitions cannot be resolved by DSC can often be measured easily in DMA
 - Semi-crystalline materials with low amorphous content
 - Composites in which the polymer weight fraction is small
 - Glass Transitions that occur over a wide range, or overlap with other thermal events
- Glass Transition measurement by DMA particularly relevant to characterizing materials for their end-use properties

Glass Transition E' Onset, E'' Peak, and Tan δ Peak

Storage Modulus E' Onset:

Occurs at lowest temperature, relates to mechanical failure

Loss Modulus E" Peak:

- Occurs at middle temperature
- Related to the physical property changes
- Reflects molecular processes the temperature at the onset of segmental motion

Tan Delta Peak:

- Occurs at highest temperature; Used historically in literature
- Measure of the "leatherlike" midpoint between the glassy and rubbery states
- Height and shape change systematically with amorphous content.

Turi, Edith, A, Thermal Characterization of Polymeric Materials, Second Edition, Volume I., Academic Press, Brooklyn, New York, P. 980.

Temperature Ramp- Glass Transition

PET Film: Effect of Frequency on Tg

• PET film tested at 0.1 Hz, 1Hz and 10 Hz

Glass Transition is a Range, not a Temperature

Crystallinity, Molecular Weight, and Crosslinking

DMA Deformation Modes

Tension DMA

• Young's Modulus (E)

 Easy to adjust clamps to accommodate different samples. Allows for thermal expansion or shrinkage.

•Dimensions:

- Length can be adjusted directly, measured by instrument.
- Thickness up to 2 mm

•Materials:

- Polymer films (Mylar, Kapton)
- Elastomers (o-rings, seals)
- Free films of coatings (dried paint)
- Fibers, bundled or single.

Storage Modulus of PET Fiber- Draw Ratios

Murayama, Takayuki. "Dynamic Mechanical Analysis of Polymeric Material." Elsevier Scientific, 1978. pp. 80.

© TA Instruments

Glass Transition of EPDM- DHR DMA Tension

Effect of Solvent

Nylon 6: Effect of Humidity on Glass Transition

Error: Film Sample not Loaded Flat

Instrument: Q800 Clamp: tension Temperature: 0 ℃ to 180 ℃ Heating rate: 3 ℃/min Frequency: 1Hz Amplitude: 10 µm

PET Film Measured at X and Z Direction

Iso-force Temp Ramp: measure shrinkage

Iso-strain Temp Ramp: measure shrinking force

Compression DMA

- Compression Modulus (E)
- Soft materials with high elasticity.
- Must be compressible, without yielding under deformation.
- •Dimensions:
 - Ideally cut to diameter of the plates. Can also accommodate smaller disks or rectangles.
 - 1-10 mm thick
- •Materials:
 - Foams (mattress, packaging, anti-vibration)
 - Soft Elastomers (above Tg only!)
 - Stiff hydrogels, biological tissue

Foam Compression DMA: Temperature Ramp Rate

Effects of Humidity on Glass Transition of Foam

Bending DMA

•Flexural Modulus (E)

•3 Point Bend (unclamped) and Cantilever (clamped)

Dimensions

- Fixed lengths: (i.e. 40, 25 and 10 mm 3PB)
- Width up to 12.5 mm
- Thickness ideally less than 1/10 length.

Materials

- Unfilled thermoplastics (Cantilever only > Tg)
- Elastomers (Cantilever)
- Thermosets (3PB)
- Composites (3PB)
- Metals (3PB)

Primary and Secondary Transitions in PC

What Causes E' Increase after Tg?

- Sample sagging after Tg
- Solution: use cantilever clamp instead of 3-p bending

Instrument: RSA G2 Clamp: 3-p bending Temperature: 50 °C to 180 °C Heating rate: 3 °C/min Frequency: 1Hz Amplitude: 10 µm

Fiber Reinforced Polymer- 3 Point Bending

Torsion DMA

- •Shear Modulus (G) "Modulus of Rigidity"
- Ideal for very high modulus materials; accommodates wide range of dimensions.

•Dimensions:

- Small: 7 mm long, 3 mm wide, 0.5 mm thick
- Large: 40 mm long, 12.5 mm wide, 4 mm thick
- Cylinder: 1.5, 3 or 4.5 mm diameter

Materials:

- Thermoplastics and Thermosets
- Elastomers
- Composites
- Metals

Fiber Reinforced Polymer- Torsion

Torsion vs. 3 Point Bending

Parallel Plate DMA

•Shear Modulus (G)

• Full range of viscoelastic behavior (glassy, rubbery and terminal region).

•Dimensions:

- 25, 8 or 4 mm parallel plates
- •0.5 3 mm gap thickness

Materials:

- Thermoplastics: load above softening point, ramp temperature down.
- Thermosets: cure in place on disposable plates.
- Elastomers: cut disk and glue to plates.
- Adhesives: too soft to test with linear DMA

Hot Melt Adhesive: Parallel Plates

Rubber DMA: Parallel Plates

Thermal Analysis Techniques for Rubber Characterization

"Happy and Sad Balls" TGA, DSC and DMA

What are Happy and Sad Balls?

- Set of 2 black rubber balls used as demonstration of viscoelastic behavior.
 - When dropped, the Happy Ball bounces and the Sad Ball does not.
- Quality varies between vendors!
- Thermal Analysis can help understand why these materials perform differently.

Amazon Reviews, "Vendor 1"

Frequency Sweep: Tan Delta (RSA G2)

Tensile Testing (RSA G2)

© TA Instruments

Physical Properties

	Vend	dor 1	Vendor 2		
	Happy Ball	Sad Ball	Happy Ball	Sad Ball	
Shore A Hardness	60	63	44	42	
Density (g/cm ³)	1.53	1.39	1.09	1.54	
Tensile Strength (MPa)	2.2	2.7	2.2	3.5	
Elongation at Break	320%	250%	190%	1,290%	
Tan δ (damping) at 50 Hz	0.127	0.232	0.046	1.158	

TAINSTRUMENTS COM

What is the source of the difference in physical properties?

- Chemistry of elastomer?
- Degree of crosslinking?
- Amount of additives or filler?

FT-IR: Useful, but not conclusive

Vendor 1

Vendor 2

Thermal Analysis Characterization Techniques

1. Thermo-Gravimetric Analysis (TGA)

- Measure weight change while increasing temperature.
- Quantify the content of volatiles, elastomer, carbon black and inorganic filler (ash).

2. Differential Scanning Calorimetry (DSC)

- Measure Heat Flow as a function of temperature.
- Identify glass transition, melting/ crystallization, and any polymerization or curing.

3. Dynamic Mechanical Analysis (DMA)

- Measure viscoelastic properties as a function of temperature.
- More sensitive characterization of glass transition.

TGA: Vendor 1, filler

TGA: Vendor 2, filler

DSC: Vendor 1

DSC: Vendor 2

DMA: Vendor 1

DMA: Vendor 2

Comparison of Glass Transitions, Vendors 1 & 2

© TA Instruments

Summary of Results

•TGA

- Quantified the basic components of the compound.
- Saw higher filler loading in rubber from Vendor 1.
- Other applications:
 - Use evolved gas analysis (mass spec, FT-IR) to identify components separately

•DSC

- •Ruled out extent of cure as a root cause for performance problems.
- Saw differences in glass transition, melting in rubber from Vendor 1.

• DMA

- Measured Tan Delta, quantifying the performance difference.
- Observed glass transition in detail, learned the Vendor 1 Sad Ball is a blend of elastomers.
- Other applications:
 - Creep-Recovery and Stress Relaxation, to mimic response in end use.

Rheology Applications Resources

How do I get started using my new rheometer?	•	Quick Start Guides (e-Training) video "Getting Started Guide" (desktop shortcut)
How do I load my sample?	•	TA Tech Tips
What kind of test should I use on my sample?	•	Applications Notes "Practical Approach to Rheology"
What parameters should I use in my procedure?	•	TRIOS Help files TA Tech Tips rheologysupport@tainstruments.com
What do these measurements tell me about my sample?	•	Webinar: "Essential Tools for the New Rheologist," Neil Cunningham
How can I be confident in the quality of my data?	•	<u>"Strategies for Better Data"</u> <u>Webinar:</u> "Experimental Challenges of Shear Rheology; How to Avoid Bad Data" Randy Ewoldt
How do I analyze my data in TRIOS?	•	Quick Start Guide: TRIOS Analysis TRIOS Help files

Trios Online Help Manual

Instructional Videos

From <u>www.tainstruments.com</u> click on Videos, Support or Training

Select Videos for TA Tech Tips, Webinars and Quick Start Courses

See also: <u>https://www.youtube.com/user/TATechTips</u>

Instructional Video Resources

Quickstart e-Training Courses

		Web based e-Training Courses		
April - State Andread - State Andread - State -	DMA Q800 Quickstart Course – Instrument and Experimental Setup	TA Instruments offers a variety of training opportunities via the Internet. e-Training opportunities include the following: QUICKSTART e-TRAINING COURSES		
	DMA Q800 – Analysis Quickstart	QuickStart e-Training courses are designed to teach a new user how to set up and run samples on their analyzers. These 60-90 minute courses are available whenever you are. These pre-recorded courses are available to anyone at no charge. Typically these courses should be attended shortly after installation. Contact Us for Web based e-Training Courses		
		Search Results for "TRIOS"		
Universal Analysis QuickStart Course	Discovery DSC – TRIOS Data Analysis			
	U.Y	TRIOS Guardian – a tool to aid in 21 CFR 11 compliance		
Universal Analysis Advanced E-Training				

Universal Analysis Custom Report

TRIOS - Analysis Reports

TRIOS – Analysis in Overlay

- San alama dagi sebas Pananana anda Sanaharan dari sahaga

TRIOS – Cox Merz Transformation

Help with TA Instruments

- Check the manuals, TRIOS help.
- Contact the Applications Helpline
 - <u>rheologysupport@tainstruments.com</u>
 - thermalsupport@tainstruments.com
- Contact the Service Helpline
 - servicehelpline@tainstruments.com
- Call your local Technical or Service Representative
- Visit our Website <u>www.tainstruments.com</u> for training videos, TA Tech tips, application notes and much more!

Thank You

The World Leader in Thermal Analysis, Rheology, and Microcalorimetry

