Use of thermal analysis as primary tool for generation and assessment of complex co-amorphous mixtures.

Dr Milan D. Antonijević
Overview of presentation

• Rational/Aims
• Introduction to amorphous and co-amorphous materials
• Methodology
• Results and Discussion
• Conclusions
• Future work
1 in 5000 drugs makes it from the lab to FDA approval
Solutions

• Improve existing drugs and engineer new drug candidates
• Active component
 • Physical modification
 • Amorphous
 • Crystalline
 • Chemical modification
 • Hydrates
 • Salts
 • Co-Crystals
• Dosage form
 • Many innovative ways
 • HME, Lyophilisation, Buccal drug delivery, 3D printed medicines etc.
Amorphous vs Crystalline

- Non-periodic molecular arrangement.
- Better apparent solubility and dissolution rate than their crystalline counterpart.
- Thermodynamically unstable, stability issues.
- Glass transition (Tg) vs Melting point (Tm)
Co-Amorphous

• Co-amorphous mixtures are homogeneous single-phase dispersions of amorphous materials.
• A co-amorphous system is primarily identified by one glass transition (Tg) indicating that the components are interacting.
• Higher glass transition temperatures indicate increased stability.
• Improved dissolution rates over single component amorphous systems.
• Not all materials can be converted into amorphous phase
Aims

• Identify whether a three component co-amorphous system can be generated by Newtonian cooling from melt
• Determine how the properties of an amorphous material are altered by the addition of a compound with the propensity to form an amorphous or crystalline material.
• Learn how to manipulate Tg (stability) by altering composition
 • Pharmaceutical formulations are often multicomponent systems
 • Small amounts of impurities may have impact on quality of product
Method

1:1:1 Molar Ratio

1. Mettler Toledo FP90 Central processor with FP82HT Hot Stage.

2. Q2000 DSC (TA Instruments, UK)

3. Q5000 IR TGA (TA Instruments, UK)
DSC method

• EQUILIBRATION -80°C
• HEATING TO 180°C AT 10°C/MIN
 • Erase previous thermal history of sample and improve interactions between mixed components
• COOLING TO -80°C AT 20°C/MIN
 • Cooling at 5°C/min was also tested
• HEATING TO 180°C AT 10°C/MIN
 • To analyse the solid state of the product, generated by melt quench method
Generation of co-amorphous outside the DSC

1. XRD patterns were recorded using a D8 Advance X-ray Diffractometer (Bruker, Germany) with CuKα radiation over the interval of 2° to 40° (2θ).

2. FTIR spectra were recorded on Perkin Elmer Spectrum Two with ATR attachment within 4000–650 cm⁻¹.
Selection of chemicals

- Piroxicam (PXC)
- Indomethacin (IND)
- PXC-IND co-amorphous

Graph showing:
- Heat Flow (W/g) vs. Temperature (°C)
- Exo Up
- Peaks at:
 - 45.17°C
 - 57.15°C
 - 64.73°C
 - 132.25°C
 - 138.08°C
 - 176.17°C
 - 181.36°C
Selection of a third component

![Graph showing heat flow (W/g) against temperature (°C) with peaks at 22.08°C, 80.96°C, 156.72°C, and 158.64°C.](image)

- **Clotrimazole (CTMZ)**
- **Acetaminophen (AC)**

EXO UO

TA Instruments UK - 2018 Materials Characterisation Seminar

10/10/2018
1:1:1 systems

- PXC IND CTMZ physical mixture
- PXC-IND-AC physical mixture

Temperature (°C):
- 110.33°C
- 124.54°C
- 123.81°C
- 130.65°C

Heat Flow (W/g)

Exo Up

TA Instruments UK - 2018 Materials Characterisation Seminar
10/10/2018
1:1:1 systems quench cooling after melting
1:1:1 systems second heating

- PXD IND CTMZ co-amorphous
- PXD-IND-AC co-amorphous

Heat Flow (mW/g)

Temperature (°C)

54.07°C
43.67°C
Overview of the results

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Melting point on initial heating (°C)</th>
<th>Crystallization on cooling (°C)</th>
<th>Thermal events on 2nd heating (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXC</td>
<td>203.1</td>
<td>-</td>
<td>Tg 64.6 Tc 138.1 Tm 181.4</td>
</tr>
<tr>
<td>IND</td>
<td>161.1</td>
<td>-</td>
<td>Tg 45.7</td>
</tr>
<tr>
<td>CTMZ</td>
<td>145.5</td>
<td>-</td>
<td>Tg 28.0</td>
</tr>
<tr>
<td>AC</td>
<td>169.8</td>
<td>-</td>
<td>Tg 22.6 Tc 87.9 Tm 158.6</td>
</tr>
<tr>
<td>PXC-IND</td>
<td>140.6</td>
<td>-</td>
<td>Tg 57.6</td>
</tr>
<tr>
<td>PXC-IND-CTMZ</td>
<td>129.3</td>
<td>-</td>
<td>Tg 53.3</td>
</tr>
<tr>
<td>PXC-IND-AC</td>
<td>130.7</td>
<td>-</td>
<td>Tg 44.1</td>
</tr>
</tbody>
</table>

\(^a\) Tg – Glass transition, Tc – Crystallisation, Tm – Melting.

TA Instruments UK - 2018 Materials Characterisation Seminar

10/10/2018
Effect of different cooling rates

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Thermal events on 2nd heating AFTER 20°C/MIN COOLING (°C)</th>
<th>Thermal events on 2nd heating AFTER 5°C/MIN COOLING (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXC-IND</td>
<td>Tg 57.6</td>
<td>Tg 53.3</td>
</tr>
<tr>
<td>PXC-IND-CTMZ</td>
<td>Tg 53.3</td>
<td>Tg 48.4</td>
</tr>
<tr>
<td>PXC-IND-AC</td>
<td>Tg 44.1</td>
<td>Tg 41.6</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>TIME (WEEKS)</td>
<td>Tg (°C)</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>PXC-IND</td>
<td>0</td>
<td>57.6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>53.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43.1</td>
</tr>
<tr>
<td>ΔTg</td>
<td></td>
<td>14.5</td>
</tr>
</tbody>
</table>
Selection of chemicals
Selection of chemicals
1:1:1 systems

PXC-IND-CAF – T_g 40.3, T_c 106.6, T_m 131.3
PXC-IND-BZD – T_g 25.6
Temperature values of thermal events

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Melting point on initial heating (°C)</th>
<th>Crystallization on cooling (°C)</th>
<th>Onset of mass loss in TGA (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXC</td>
<td>201.2</td>
<td>Tg 64.4, Tc 132.7, Tm 175.9</td>
<td>201</td>
</tr>
<tr>
<td>IND</td>
<td>158.8</td>
<td>Tg 42.7</td>
<td>199</td>
</tr>
<tr>
<td>BZD</td>
<td>123.7</td>
<td>Tc 101.6 (cooling), Tm 123.7</td>
<td>106</td>
</tr>
<tr>
<td>CAF</td>
<td>149.6 (enantiotropic transition), 235.8</td>
<td>Tc 233.3 (cooling), Tm 235.6</td>
<td>144</td>
</tr>
<tr>
<td>PXC-IND</td>
<td>140.6</td>
<td>Tg 57.6</td>
<td>186</td>
</tr>
<tr>
<td>PXC-IND-BZD</td>
<td>130.7</td>
<td>Tg 25.6, Tc 90.0 (HSM), Tm 110.0 (HSM)</td>
<td>187</td>
</tr>
<tr>
<td>PXC-IND-CAF</td>
<td>129.3</td>
<td>Tg 40.3, Tc 106.6, Tm 131.3</td>
<td>184</td>
</tr>
</tbody>
</table>
A Comparison Of The XRD Diffractograms For The Prepared Mixtures And Co-Amorphous Samples

- Piroxicam
- Benzamide
- Co-amorphous PXC-IND-BZD
- Physical mix PXC-IND-CAF
- Indomethacin
- Physical mix PXC-IND-BZD
- Caffeine
- Co-amorphous PXC-IND-CAF
<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>TIME (WEEKS)</th>
<th>Tg (°C)</th>
<th>SYSTEM</th>
<th>TIME (WEEKS)</th>
<th>Tg (°C)</th>
<th>SYSTEM</th>
<th>TIME (WEEKS)</th>
<th>Tg (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXC-IND</td>
<td>0</td>
<td>57.6</td>
<td></td>
<td>0</td>
<td>28.8</td>
<td></td>
<td>0</td>
<td>44.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>53.5</td>
<td>PXC-IND-BZD</td>
<td>1</td>
<td>26.7</td>
<td></td>
<td>1</td>
<td>43.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>52.0</td>
<td></td>
<td>2</td>
<td>26.1</td>
<td>PXC-IND-CAF</td>
<td>2</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49.4</td>
<td></td>
<td>3</td>
<td>26.3</td>
<td></td>
<td>3</td>
<td>42.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43.1</td>
<td>ΔTg</td>
<td>4</td>
<td>26.7</td>
<td>ΔTg</td>
<td>4</td>
<td>42.4</td>
</tr>
<tr>
<td>ΔTg</td>
<td></td>
<td>14.5</td>
<td></td>
<td></td>
<td>2.1</td>
<td></td>
<td></td>
<td>2.1</td>
</tr>
</tbody>
</table>
Hot-stage microscopy

PXC-IND-BZD

PXC-IND-CAF

TA Instruments UK - 2018 Materials Characterisation Seminar

10/10/2018
XRD OF COAMORPHOUS LEFT ISOTHERMAL AT THEIR CRYSTALLISATION TEMPERATURE
Conclusions

It is possible to create a 3 component co-amorphous material via a melt quench method using either a crystalline or amorphous third component.

The addition of a third component has lowered the T_g in all cases.

Compounds that have propensity to crystallise generate more stable co-amorphous system (ΔT_g – low)

The co-amorphous materials created using a crystalline component show less relaxation and a smaller deviation in T_g value upon storage (4 weeks).

T_g of co-amorphous system can be altered using appropriate 3rd component.

Physical parameters (ie. T_m and T_g) may not be sufficient, so knowledge of chemical interaction must be brought into equation when manipulating T_g.
Future work

Determine the change in chemical environments that has occurred upon transformation to amorphous.

Explore influence of structural features on creation and stability of complex co-amorphous systems.

Analyse the influence of molar ration on properties of co-amorphous systems.

Define key parameters for design/management of co-amorphous systems.
Acknowledgements

• PhD Students
 • Alessandra D’Angelo
 • Benjamin Edgar
• XRD expert
 • Dr Andrew P. Hurt
Thank you for listening