

"I have a viscometer, why do I need a rheometer"

Regional Sales Meeting 2022

Presented by: Field Applications

Why do I Need a Rheometer?

Faster More reliable More sensitive More capable

Ω

How does a rheometer work?

Rheometers measure flow and deformation

What need does rheology fill for the customer?

Measure Flow & Deformation

- Viscosity
- Elasticity
- Yield stress
- Structure formation

Caused by

- Formulation
- Molecular Weight & Distribution
- Molecular structure
- Concentration
- Dispersion microstructure

Understand & Predict

- Processing Characteristics
- Sensory Perception
- Product Performance
- Storage Stability

TA rheometers deliver outstanding torque sensitivity

- N.m
 - An apple (about 150 g) on the end of a meter stick

– 1.5 N.m

■ µN.m

- A grain of salt (about 0.5 mg) on the end of a meter stick)
- 5 µN.m

nanoN.m

- A speck of dust (1 µg) on the end of a meter stick
- 10 nanoN.m

Test Geometries

Waters[™] |

Geometries enable wide viscosity range (centipoise)

Geometries enable wide modulus range (Pa)

Rheology test methods measure critical material behaviors

Viscometer or Rheometer!

A **rheometer** is an instrument used to measure the way a liquid flows in response to applied stress, whereas a **viscometer** is an instrument used to measure the viscosity of a fluid.

shear rate (1/s)

A rheometer provides the whole flow curve, while a viscometer provide data at a very small portion of the flow curve

Optimizing liquid emulsion adhesive for high-speed coating

- User's Formulation 1 under-performs the Competitor's product in high-speed coating process, leaving voids on the metal substrate
- User suspects issue with high-shear viscosity?

Solution: use rheology to evaluate new formulations and optimize performance

- Similar viscosity at high shear rate/
- 8x difference in Zero-Shear Viscosity η_o
 - Related to flow at rest, ability to stay in place
 - Low-torque sensitivity critical for this application

Solving a high-cost drug packaging problem

Insight: Time-dependent change in microstructure

- 10² After loading sample After 4 hours rest Viscosity (cP) After 16 hours rest 10 After stirring 10 10-4 10-3 10-2 10-1 100 10¹ Viscometer Stress (Pa) At rest, suspension develops weak
 - microstructure, creating a yield stress.
 - At the start of production, flow is slower than expected, dispensing low volumes

- A break-through new biologic drug is being scaled-up for commercialization
- Syringes filled at the start of each day are underfilled
- Improperly-dosed syringes must be scrapped.
- Significant loss of revenue

Solution: Agitation of the bulk storage vessel prevents increase in yield stress

Flow measurements quantify observed behavior

- Low shear rates: High viscosity provides storage stability
- High shear rates: Low viscosity enables fast coating
- Formulation A: Desirable rheological profile

Weak Yield Stress in a Suspension

- Engineered yield stress in complex fluids supports suspended phase, prevents settling/ agglomeration
- Example data on beverage: yield stress suspends dispersed phase; shear-thinning ensures pourability, drinkability

Ranges of HR-10 versus Common Viscometers

Compared with all the common viscometers, the HR-10 can get more than 2 decades lower in angular velocity and nearly 1 decade higher. In terms of torque, the HR-10 can get about 3 decades lower

and nearly 2 decades higher than the common viscometers.

Viscoelastic Parameters Obtained from Rheology

Complex Modulus:

Measure of materials overall resistance to deformation.

The Elastic (Storage) Modulus:

Measure of elasticity of material. The ability of the material to store energy.

The Viscous (loss) Modulus:

The ability of the material to dissipate energy. Energy lost as heat.

Tan Delta: Measure of material damping. Increasing tan d implies a greater potential for energy dissipation and lower elasticity, and vice-versa. Measure of viscous property while having the appropriate level of stiffness.

G' $= \left(\frac{\sigma}{\nu}\right) \cos \delta$ **G**" $= \left(\frac{\sigma}{\nu}\right) \sin \delta$

 $G^* = \frac{\sigma}{\sigma}$

 $\tan \delta = \left(\frac{G}{C'}\right)$

In oscillation measurement, which is more elastic?

HONEY

Honey

Mayonnaise

Viscosity Profile of Thermoplastics

Viscosity Profile of Thermoplastics

Testing Range of Rotational Rheometers and Capillary Rheometers

Waters[™] |

Frequency-dependent dynamic properties reveal time-scales of viscous vs. elastic behavior

Angular frequency ω (rad/s)

Why do I need a Rheometer?

Reason	Why It's Useful
Shear Rate Range	Low Shear Rate Range → Stability, Sedimentation, Leveling Medium Shear Rate Range → Mixing, Pipe Flow High Shear Rate Range → Brushing, Roll Coating
Torque Range	7 decades of Torque Low Torque \rightarrow Water High Torque \rightarrow Some asphalt materials
Rate Ramp Up/Down	Common estimate of thixotropic (structure breakdown) nature of materials.
Stress Control	Yield stress for structured materials
Dynamic Oscillatory Testing	This is HUGE! These properties relate to: Stability Buildup of structure after flow Inherent strength of the structure "Non-Destructive" test to fingerprint formulations
Transient Tests	Creep and stress relaxation. Creep is useful for predicting the deformation of a material under a constant load during its usage.
Temperature Control	Superior temperature control for most accurate viscosity and modulus measurements
Accessories	Many fixtures to get viscosity and modulus values, along with other properties that might be important for predicting the performance of materials.

Thank You!