

Section III and IV: Basic DMA methods, Intermediate DMA methods and other advanced Topics

Keith Coasey PhD Rheology Applications Engineer TA Instruments – Waters LLC

8:30 - 9:00 AM	Light Breakfast	
9:00 - 9:20 AM	I Have a Viscometer Why do I need a Rheometer?	
9:20 - 10:15 AM	Rheological Theory and Introduction to HRx0 and Geometries	
10:30 - 10:50 AM	Morning Break with Beverages and Snacks	
10:50 - 12:00 PM	Rheology Applications Examples - Basic and Advanced	
12:00 - 1:00 PM	Lunch	
1:00 - 2:00 PM	DMA Theory and Introduction to DMA 850	
2:00 - 3:00 PM	Basic and Advanced DMA Applications	

- Theory and Instrumentation
- Basic DMA Methods
- Advanced DMA Methods
- Troubleshooting
- Other Advanced DMA & RheologyTopics (if time)
 - TTS
 - Humidity
 - Tribology

DMA instrumentation

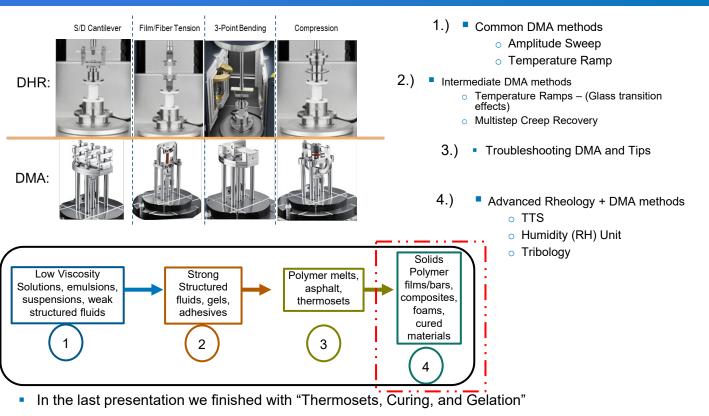
RSA G2

Standalone DMA

Rheometer with DMA mode

DMA instrumentation - Load Cell and Sensitivity

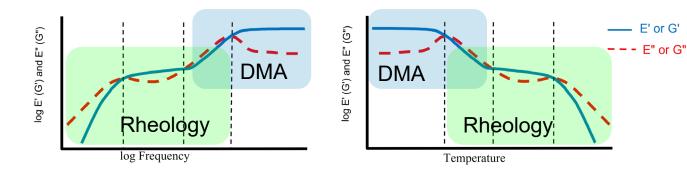
TA



Load Cell Size (Maximum Force)

Load Cell Sensitivity (Force resolution & minimum force)

Organization of talk



Now we will cover post cure materials or solid materials (DMA testing)

DMA Testing Overlap with Rheometer

Overlapping tests with the Rheometer

- Creep and Stress Relaxation
- Oscillation tests

Unique to DMA (Both DHR and DMA850)

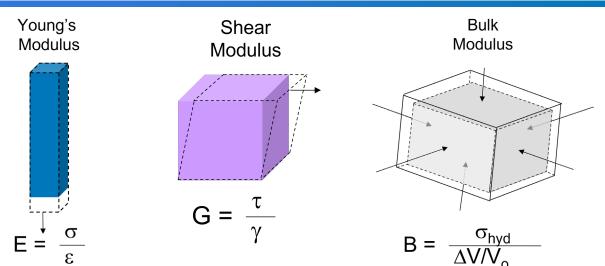
• Monotonic testing (pull to failure at a specified rate)

Unique to DMA850

Fatigue Testing

Considerations

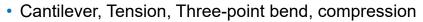
- In or near the glassy state materials can slip between plates (Rheology)
- In the liquid or molten state materials can flow out of the clamps (DMA)

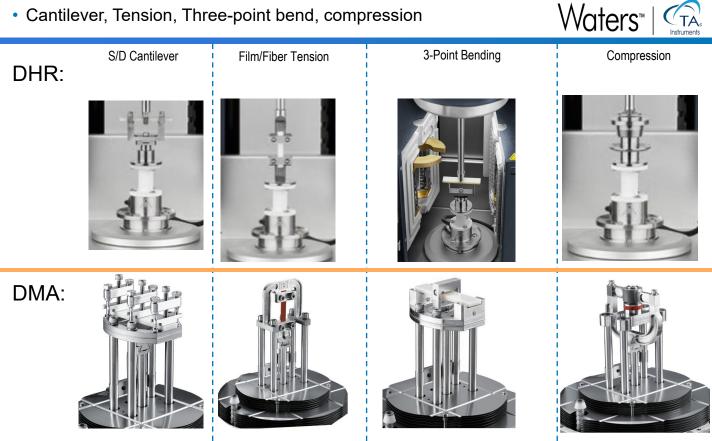

What samples can be measured on a DMA?

- By changing the clamp, we can test a range of different materials
- Each clamp is representative of a unique physical mode of deformation
 - Consider the Physics of the deformation
- A user should pick a clamp based on use case scenario of the material

Waters[™]

Three fundamental modes of deformation

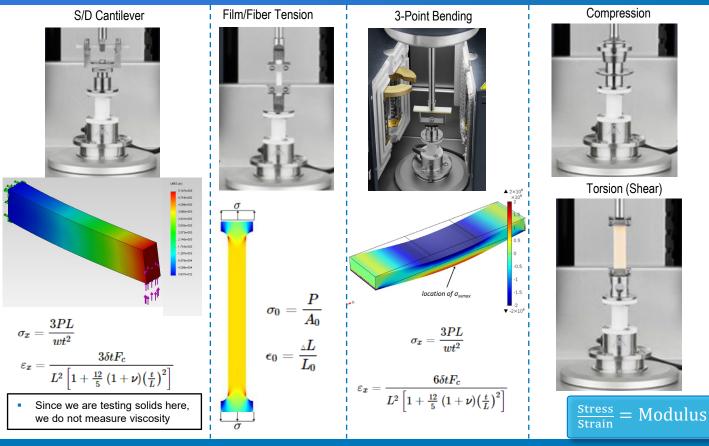

Where Dashed lines indicate initial stressed state

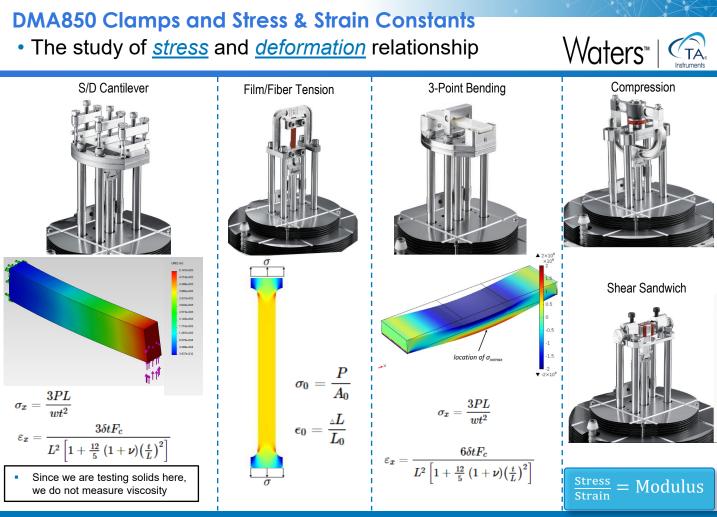

- σ = uniaxial tensile or compressive stress
- τ = shear stress
- σ_{hvd} = hydrostatic tensile or compressive stress
- ε = normal strain
- γ = shear strain

 $\Delta V/V_o$ = fractional volume expansion or contraction

*Each of these is a tensor

Variety of DMA clamps

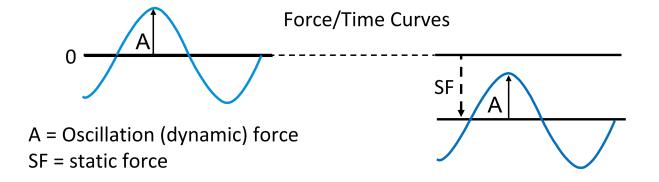

In DMA, we characterize the relationship between stress and strain with various geometries


DHR DMA Clamps and Stress & Strain Constants

- The study of <u>stress</u> and <u>deformation</u> relationship
- · Correct Sample dimensions are required for ideal stress distribution Quantitative Modulus

DMA Results can correlate to...

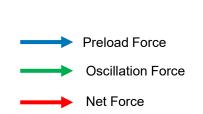
How do DMAs Work? Waters[™] | Film/Fiber Tension F ΔΧ F 7.5


F – force

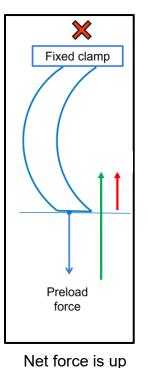
 Δx - displacement

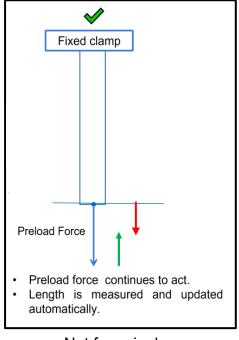
Shear strain
$$\gamma = \frac{\Delta x}{y_0}$$
 Shear stress $\sigma = \frac{F}{A}$

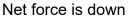
Some Clamps Require Offset (static) Force!



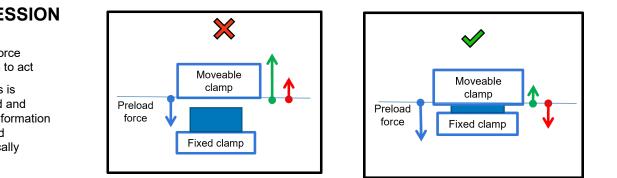
<u>Clamps without static force:</u> Single Cantilever Dual Cantilever Shear Sandwich <u>Clamps with static force:</u> Tension Film Tension: Fiber 3-Point Bend Compression Penetration

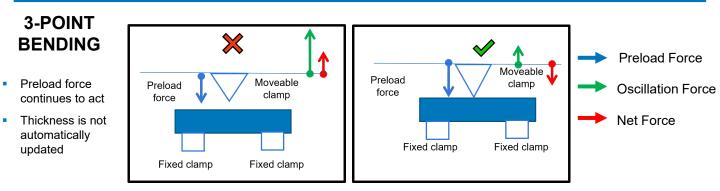

Preload force in tension


Preload force > Osc. Force



 Preload force must exceed oscillation force when the motor moves upward





Preload force in compression, 3-point bending

Preload force > Osc. Force

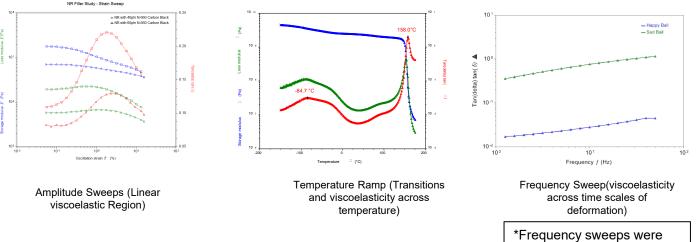
COMPRESSION

- Preload force continues to act
- Thickness is measured and sample information is updated automatically

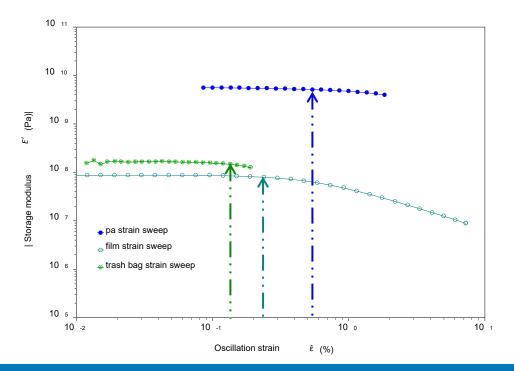
Clamp Type	Static Force	Force Track
Tension Film	0.01 N	120 to 150%
Tension Fiber	0.001 N	120%
Compression	0.001 to 0.01 N	125%
Three Point Bending Thermoplastic Sample	1 N	125 to 150%
Three Point Bending Stiff Thermoset Sample	1 N	150 to 200% Can use constant static force

Note: Constant (or static) force can be used as long as static force > dynamic force through out the entire experiment.

- Force track ensures that static force exceeds oscillation force throughout the experiment
- Values from 125-150% (850/Q800) or 25-50% (RSA-G2) is a good starting point for most samples
- Decreases static force in proportion to sample modulus in "Tension clamps" to reduce stretching as specimen weakens on increasing temperature.
- Constant (or static) force can be used as long as static force > oscillation force through out the entire experiment.
 - Stiff samples in 3-point bending (thermosets)


DMA Basic Experimental Techniques

Most common DMA methods

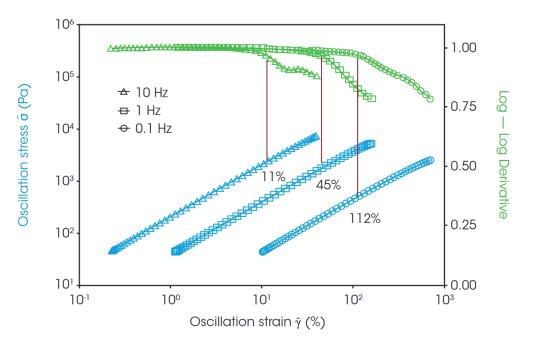

Waters[™] | [™]

- Three primary routine DMA Tests (Covered in presentation I)
 - Common DMA methods
 - Amplitude Sweep
 - Temperature Ramp

Linear Viscoelastic region in various samples

- Common DMA methods
 - o Amplitude Sweep
 - o Temperature Ramp

From an amplitude sweep:


0

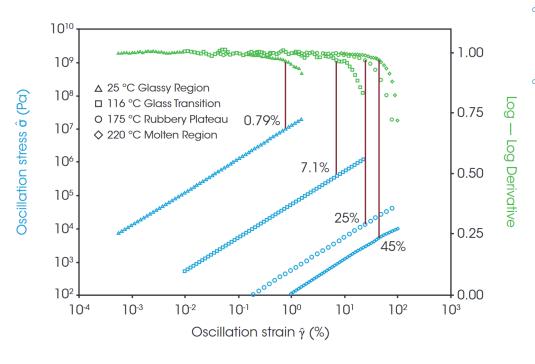
Waters[™]

- Obtain the Linear viscoelastic region (range of strain values where modulus is independent) at a given frequency
- When performing nondestructive experiments (frequency sweep, temperature ramp, time sweep) a strain within the LVR must be chosen
- Solid samples typically have an LVR that ends ≤1%

Linear Viscoelastic region dependence on frequency

- Common DMA methods
 - o Amplitude Sweep
 - o Temperature Ramp

From an amplitude sweep:

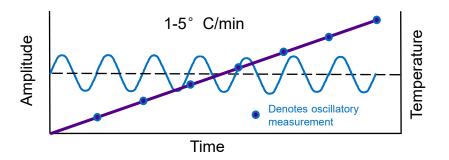

0

Waters[™]

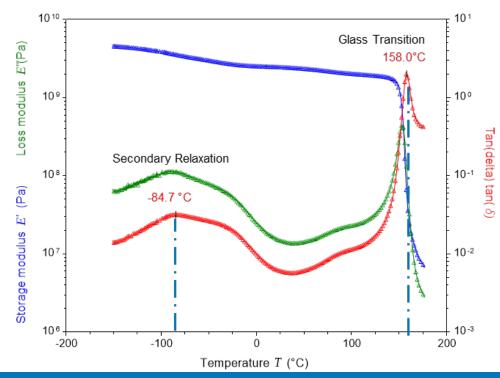
- Obtain the Linear viscoelastic region (LVR range of strain values where modulus is independent) at a given frequency
- Frequency dependence of LVR – LVR is reduced at higher frequencies, molecules are more stiff

Linear Viscoelastic region dependence on Temperature

- Common DMA methods
 - o Amplitude Sweep
 - Temperature Ramp



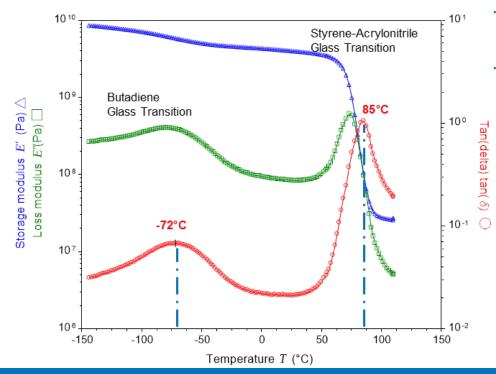
- From an amplitude sweep:
 - Obtain the Linear viscoelastic region (LVR range of strain values where modulus is independent) at a given frequency
 - Temperature dependence of LVR – LVR is reduced at lower temperatures, molecules are more stiff



- Common DMA methods
 - o Amplitude Sweep
 - o Temperature Ramp
 - We covered temperature ramps briefly in the rheology section
 - Temperature ramps in DMA are a powerful tool that we will cover in more thorough detail

Primary and Secondary Transitions in PC

- Common DMA methods
 - Amplitude Sweep
 - o Temperature Ramp


Waters[™] | ⁽

- From a Temperature ramp:
 - Material glass transition
 - Secondary transitions
 - Local Main-Chain Motion intramolecular rotational motion of main chain segments four to six atoms in length
 - Side group motion with some cooperative motion from the main chain

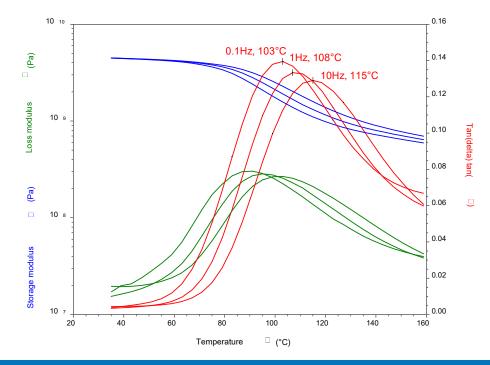
Primary and Secondary Transitions in ABS

- Common DMA methods
 - Amplitude Sweep
 - <u>Temperature Ramp</u>

• From a Temperature ramp:

Material glass transition

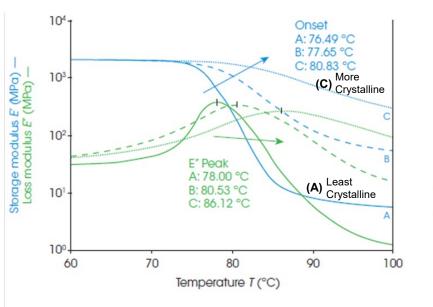
Waters™


TA

- Secondary transitions
- Local Main-Chain Motion intramolecular rotational motion of main chain segments four to six atoms in length
- Side group motion with some cooperative motion from the main chain

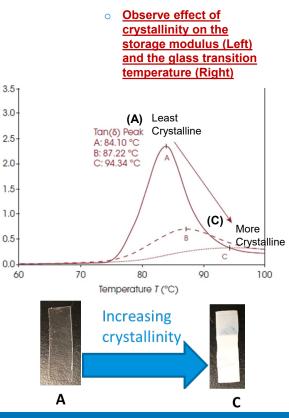
PET Film: Effect of frequency on Tg

- Common DMA methods
 - o Amplitude Sweep
 - o Temperature Ramp



- From a Temperature ramp:
 - Observe effect of frequency on the glass transition – higher frequency generally increases Tg, the molecules become more stiff

PET Film: Effect of crystallinity on modulus and tan δ


- Intermediate DMA methods
 - o Temperature Ramps (Glass transition effects)
 - Multistep Creep Recovery

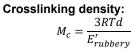
From a Temperature ramp:

Waters™

TA

Effect of crosslinking density on rubbery modulus and Tg

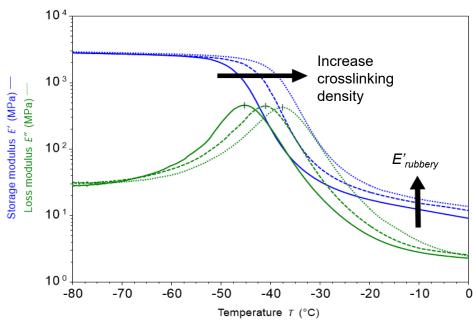
- Intermediate DMA methods
 - o Temperature Ramps (Glass transition effects)
 - Multistep Creep Recovery



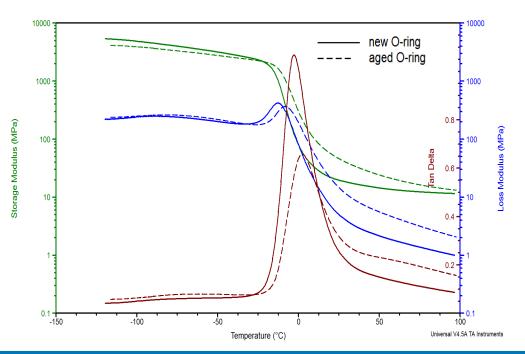
- From a Temperature ramp:
 - Observe effect of <u>crosslinking on the</u> <u>storage modulus and the</u> <u>glass transition</u> <u>temperature</u>

Waters™

Increasing crosslinking density:


- Tg shifted to higher temperature
- Transition becomes broader and weaker (tan d decreases)
- Rubbery plateau modulus increases

 $\rm M_{c}$ is the molecular weight between crosslinks

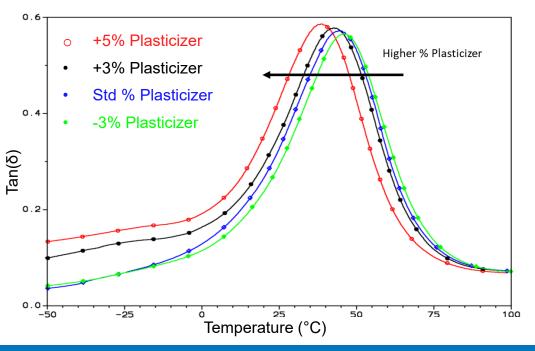

R is the universal gas constant T is the absolute temperature (in K) d is the density of the polymer.

A lower Mc implies higher extent of crosslinking

O-Ring: Effect of aging over time

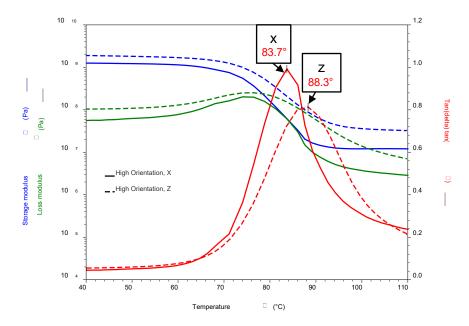
- Intermediate DMA methods
 - o Temperature Ramps (Glass transition effects)
 - Multistep Creep Recovery

- From a Temperature ramp:
 - Observe effect of aging on a rubber sample aged O-ring has higher
 Tg and increased storage modulus at higher temperatures



Effect of Plasticizer on Vinyl Flooring Tg

- Intermediate DMA methods
 - o Temperature Ramps (Glass transition effects)
 - Multistep Creep Recovery

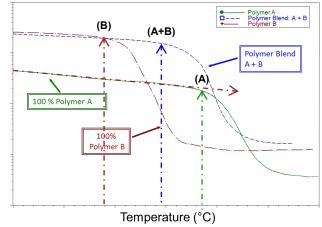


- From a Temperature ramp:
 - Observe effect of increased plasticizer loading
 - Plasticizers shield molecular interactions of matrix, thereby decreasing the glass transition, and softening the material

Effect of residual orientation on mechanical properties

- Intermediate DMA methods
 - o Temperature Ramps (Glass transition effects)
 - Multistep Creep Recovery

- From a Temperature ramp:
 - Observe effect of orientation on storage modulus and glass transition temperature
 - Bottle is stronger in "Z" direction, and this makes sense considering the application

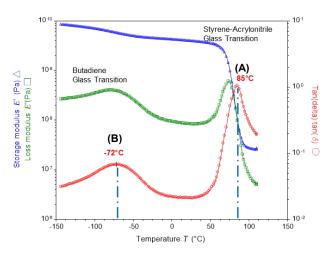


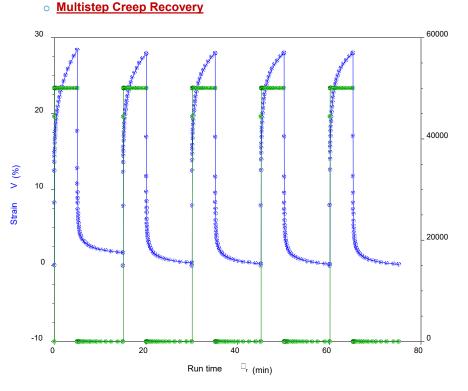
Polymer Blends - Miscibility

- Intermediate DMA methods
 - o Temperature Ramps (Glass transition effects)
 - Multistep Creep Recovery

Miscible Blend

- Pure components have unique T_g's
- Blend has one T_g





- From a Temperature ramp:
 - Observe blend compatibility

Immiscible Blend

Blend has two unique T_g's

Multistep Creep recovery of Mattress Foam

Temperature Ramps – (Glass transition effects)

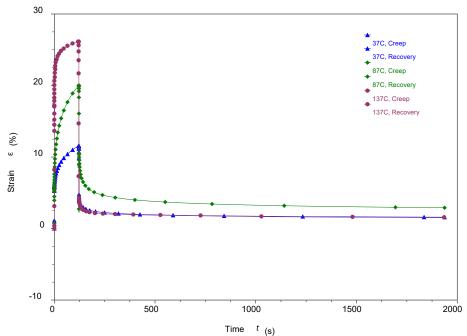
Waters™

• From a multistep creep recovery:

Stress

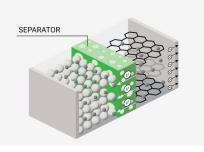
C

(Pa


- Observe longterm elastic stability of material (consistency of compliance over life span)
- Strain increasing cycle to cycle would indicate foam fatigue

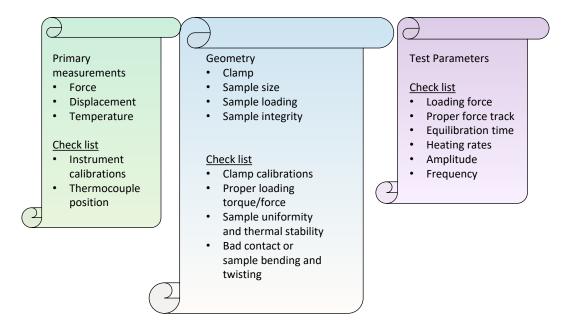
Intermediate DMA methods

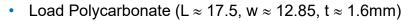
Creep recovery of Battery Separator Film


- Intermediate DMA methods
 - Temperature Ramps (Glass transition effects)
 - o Multistep Creep Recovery

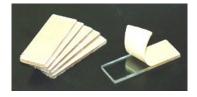
Coated Creep Recovery

- From a creep recovery:
 - Observe elasticity of material at different temperatures under the same load
 - An ideal separator should retain elastic characteristics at elevated temperatures


Waters™



Troubleshooting Experimental Issues



- Use Single Cantilever Clamp
 - 20-30 micrometer amplitude
 - 1 Hz frequency
- Storage Modulus at Room Temperature E' = 2.35 GPa (2350 MPa) +/- 5%
- Tan Delta at Room Temperature Tan δ < 0.01
- Transition Temperature Tan δ peak between 155-160°C @ 1Hz, 3-5°C/min E" peak will be about 5°C lower

p/n: 982165.903

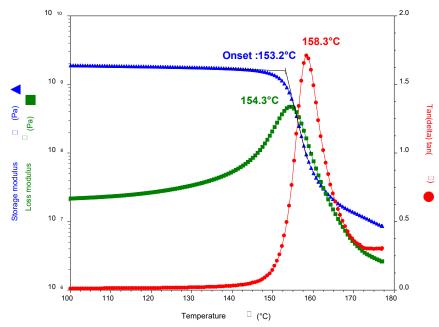
Temp ramp on polycarbonate

Waters™

PC sample

p/n: 982165.903

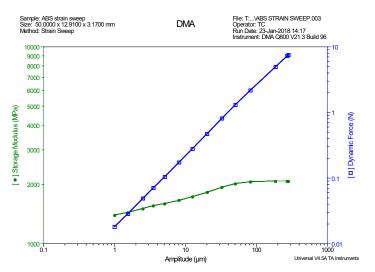

single cantilever

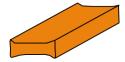

Amplitude: 20 µm

Temperature: ambient to 180°C Heating rate: 3°C/min Frequency: 1 Hz

Clamp:

Storage Modulus at Room Temperature • E' = 2.35 GPa (2350 MPa) +/- 5%

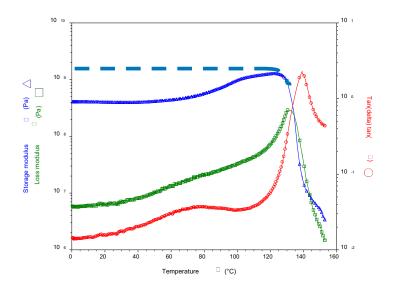

Transition Temperature •


Tan δ peak between 155-160°C @ 1Hz, 3-5°C/min

E' Increase in a strain sweep

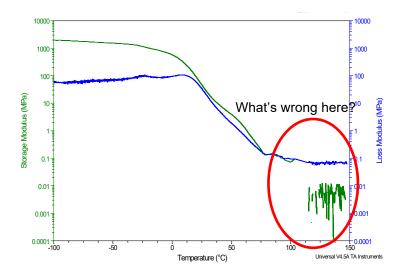
The sample is not flat and not in full contact with the clamp face. Solutions: (1) Prepare a flat sample

(2) Increase force track or increase static force


Waters™

E' increase in a temp ramp

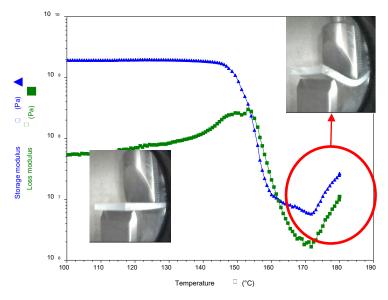
• The E' of a material should not increase with temperature unless it is crystalized or crosslinked



Noisy modulus after Tg

Waters™

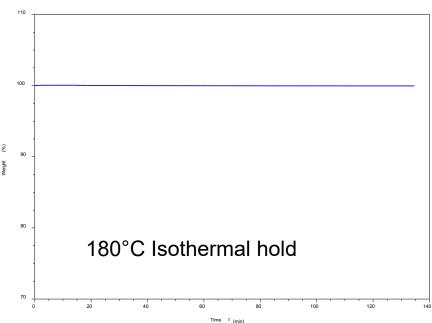
What is the problem with this data collected after T_g?



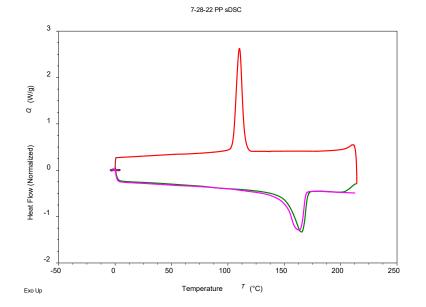
Instrument: Q800 Clamp: tension Temperature: -100°C to 150°C Heating rate: 3°C/min Frequency: 1Hz Amplitude: 10 µm

Sample sagging

- Sample sagging after T_g
- Solution: use cantilever clamp instead of 3-p bending


Instrument: RSA G2 Clamp: 3-p bending Temperature: 50°C to 180°C Heating rate: 3°C/min Frequency: 1Hz Amplitude: 10 µm

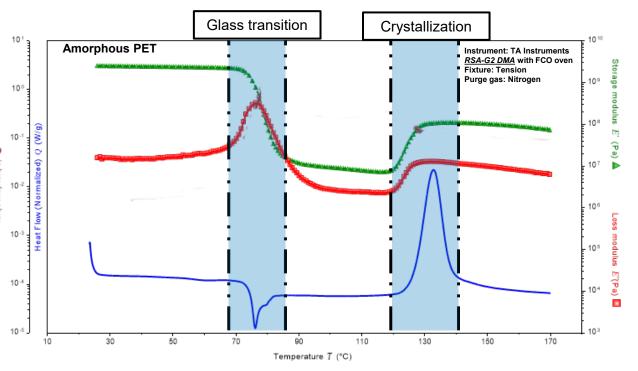
Clamp Type	To Increase Stiffness	To Decrease Stiffness
Tension Film	Decrease length or increase width. If possible increase thickness.	Increase length or decrease width. If possible decrease thickness.
Tension Fiber	Decrease length or increase diameter if possible.	Increase length or decrease diameter if possible.
Dual/Single Cantilever	Decrease length or increase width. If possible increase thickness. Note: $L/T \ge 10$	Increase length or decrease width, If possible decrease thickness. Note: $L/T \ge 10$
Three Point Bending	Decrease length or increase width. If possible increase thickness.	Increase length or decrease width. If possible decrease thickness.
Compression – circular sample	Decrease thickness or Increase diameter.	Increase thickness or decrease diameter.
Shear Sandwich	Decrease thickness or Increase length and width.	Increase thickness or decrease length and width.



TGA - PP Nitrogen Isothermal 180°C_TGA5500_7212022

Look at temperature stability (isothermal hold) in the TGA before doing a rheology measurement at elevated temperatures!

TGA will also measure the ceiling temperature for Rheology and DMA experiments before decomposition occurs



Unexpected changes in DMA data as a function of temperature (temperature ramp experiment) can be pre-screened using a DSC to looks at transitions

Importance of thermal analysis in TTS studies

- Scan material over temperature range to get an idea of transition behavior and modulus-temperature.
- Allows for optimizing experimental method (axial force, force track, % strain, etc.) prior to longer TTS experiments.

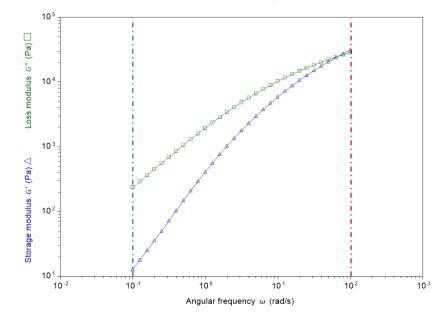
Waters™

TTS and Advanced DMA Topics

©2022 Waters Corporation

49

Why Use TTS?

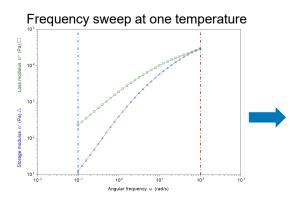


- o <u>TTS</u>
- Humidity (RH) Unit
- Tribology

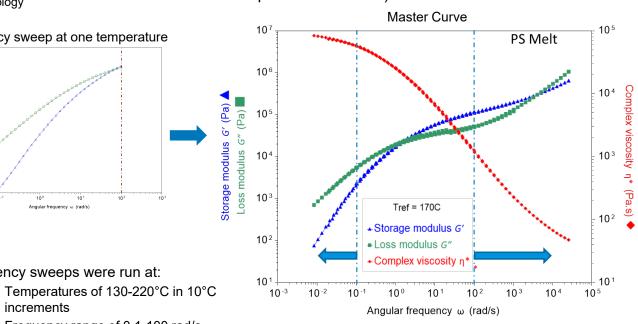
- Mechanical limitations on the upper ceiling frequency
- User time limitations at the lower frequency limit
- Extrapolates material behaviour in the frequency domain by orders of magnitude

Time Temperature Superposition

- Very powerful technique used to expand the measurable frequency range
- Information on technique is heavily requested

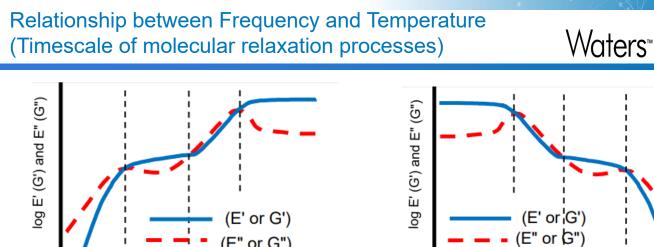


*TTS is applicable for frequency sweeps performed above Tg on either a Rheometer or DMA regardless of geometry


Why Use TTS?

- Advanced Rheology + DMA methods
 - o TTS
 - o Humidity (RH) Unit
 - Tribology

Frequency range here was expanded from 0.1-100 rad/s to 0.01-10,000 rad/s (at a reference temperature of 170°C)



increments

Frequency sweeps were run at:

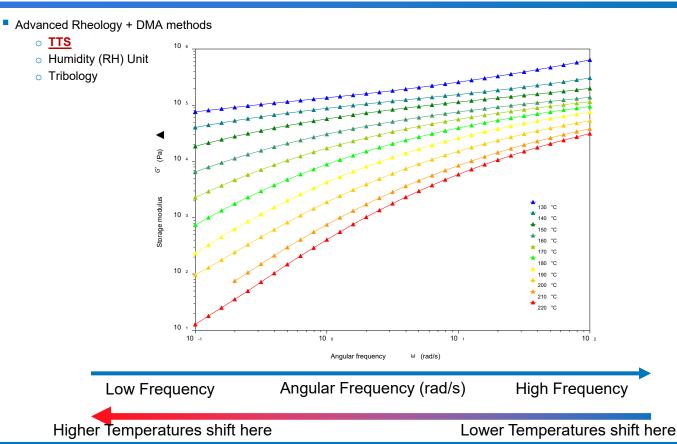
- Frequency range of 0.1-100 rad/s 0
- Strain of 5% 0

0

(E" or G")

At low frequencies molecular relaxation is at large time scales- large length scales

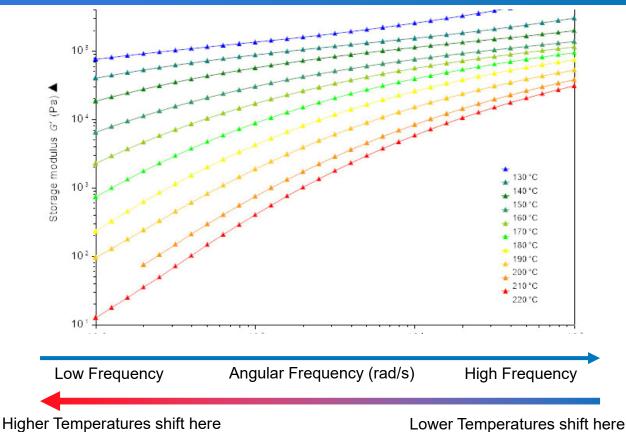
log Frequency

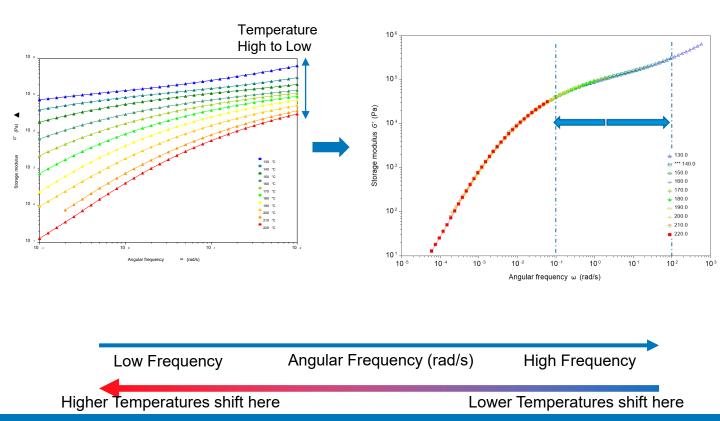

- At high frequencies molecular relaxation is at short time scales - small length scales
- At low temperatures molecular relaxation is slow - the diffusion is limited to small length scales and small time scales

Temperature

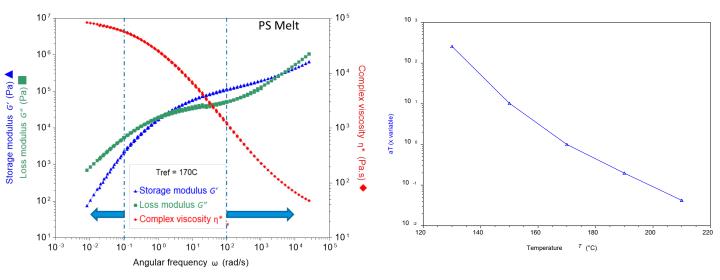
At high temperatures molecular relaxation is fast - the diffusion is predominately large length scales and large time scales

Commonality between Frequency and Temperature is the timescale of molecular relaxation (Polymer chains diffusing)

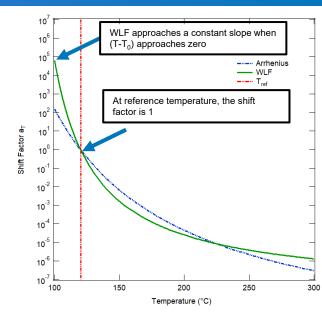

Why Use TTS?


TTS Shifting Cartoon

Why Use TTS?


Waters[™] | [™]

TTS Shifting Results


- Two plots (datasets) are generated when performing TTS
 - One is the mastercurved frequency sweep (Left)
 - Shift factors (a_T) are generated as a function of temperature
 - Shift factors can be used to calculate the complex Viscosity as a function of temperature if the zero-shear complex viscosity is known
 - Can be used recalculate frequency space when the reference temperature is altered

TTS Shifting Fits

Waters[™] | <

TA

- Physical interpretation of shift factor
 - Represents the factor by which the molecular relaxation time is increased (a_T>1) or decreased (a_T<1)
 - The molecular relaxation time (reptation time) is the time it takes for a polymer molecule to move its own length

Arrhenius (used for activation energy)

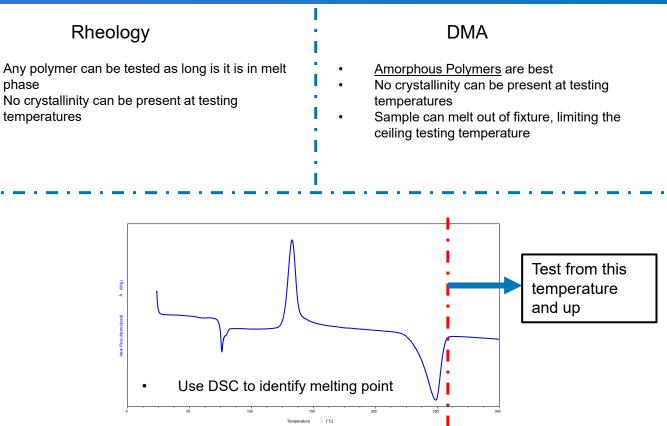
$$a_T = \exp\left(\frac{E}{RT} - \frac{E}{RT_0}\right)$$

• At temperatures **well above T**_g, from T_g +100°C and above use Arrhenius

WLF

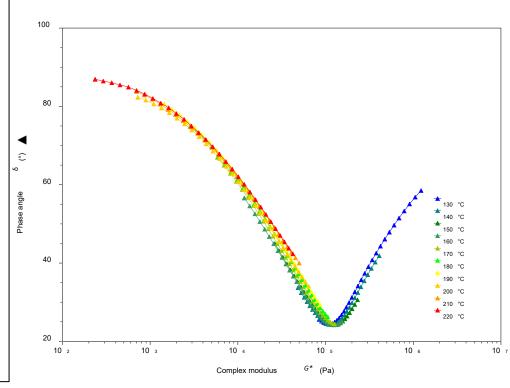
$$\log(a_T) = \frac{-C_1^0(T - T_0)}{C_2^0 + (T - T_0)}$$

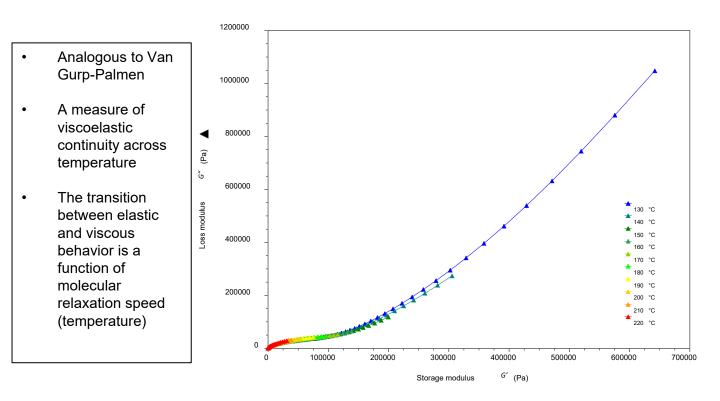
• At lower temperatures, from T_g to T_g +100°C use WLF



In General:

- Polymer Materials
- Limited to no applicability for:
 - Block copolymers
 - Complex polymer functionalization
 - o Crosslinked materials (gels, thermosets)
 - Mixtures
 - o Composites


TTS Criterion (Material applicability)


Verifying TTS Shift (Van Gurp-Palmen Plot)

- A measure of viscoelastic continuity across temperature
- The transition between elastic and viscous behavior is a function of molecular relaxation speed (temperature)
- Discontinuities indicate complex thermalrheological activity
- Block copolymers, phase transitions (melting, crystallization, phase separation), complex polymer functionalization can introduce discontinuities

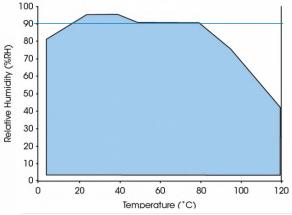
Waters[™]

Verifying TTS Shift (Van Gurp-Palmen Plot)

Waters™

Humidity Units for the HR and DMA

Waters™

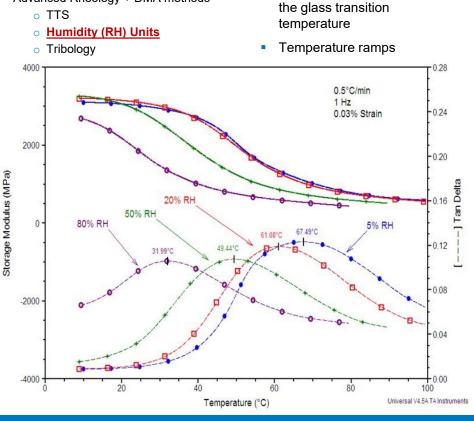


- Advanced Rheology + DMA methods
 - o TTS
 - o Humidity (RH) Units
 - Tribology

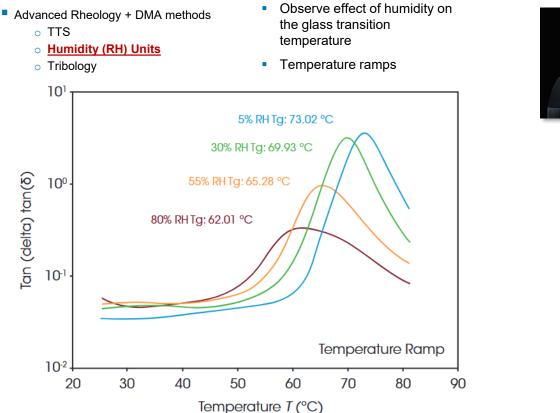
- With RH unit one can characterize:
 - Humidity effect on Tg
 - Changes in LVR
 - Changes in viscoelasticity due to humidity

Performance	Specifications

Temperature Range	5 °C - 120 °C
Temperature Accuracy	±0.5 °C
Heating/Cooling Rate	Maximum ± 1 °C/min over entire temperature range
Humidity Range	5% to 95% (See humidity range chart)
Humidity Accuracy	5-90%RH: ±3% RH >90%RH: ±5% RH
Humidity Ramp Rate	±2% RH/min (fixed), both increasing and decreasing


Effect of Humidity on Tg

Advanced Rheology + DMA methods



Observe effect of humidity on

Effect of Humidity on Tg of Bioderived Polymer (PLA)

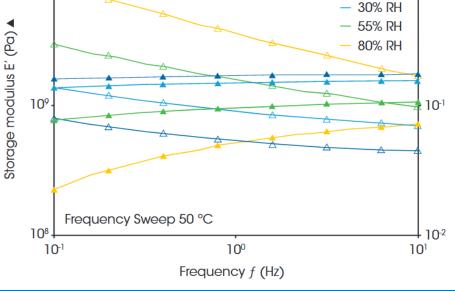
Waters[™]

Effect of Humidity on Elastic Modulus in PLA

- Advanced Rheology + DMA methods
 - o TTS

1010

- o Humidity (RH) Units
- Tribology

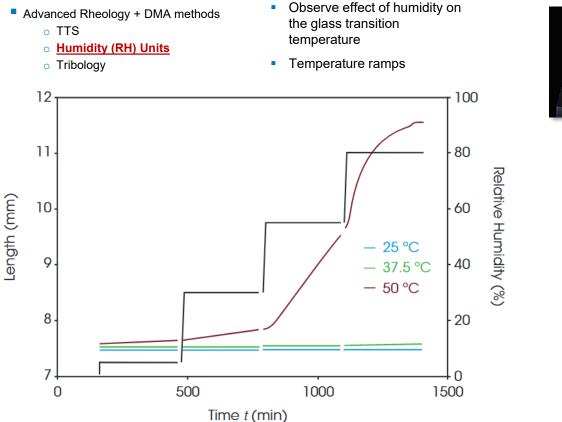

 Observe effect of humidity on the glass transition temperature

- 5% RH

100

Tan(delta) tan(δ) ∆

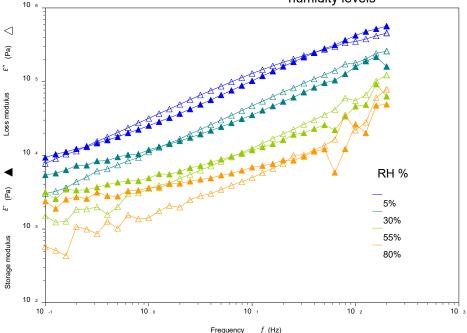
Temperature ramps



Effect of Humidity on Sample Expansion in PLA

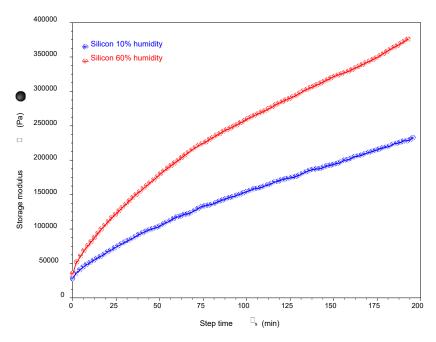
Waters[™]

Instrument


Effect of Humidity on Viscoelastic properties memory foam

- Advanced Rheology + DMA methods
 - o TTS
 - o Humidity (RH) Units
 - Tribology

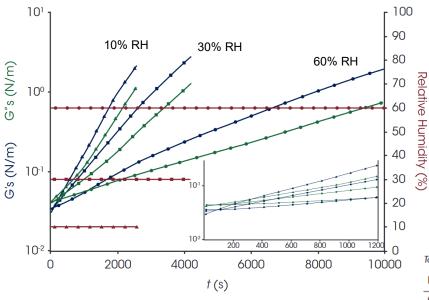
- Observe effect of humidity on the viscoelastic properties of memory foam
- Frequency Sweeps at different humidity levels


Effect of Humidity on Curing of Silicone Adhesive

Waters[™] | •

- Advanced Rheology + DMA methods
 - o TTS
 - o Humidity (RH) Units
 - Tribology

- Higher humidity results in faster curing
- Isothermal Oscillation Time experiment



Effect of Humidity on Paint Drying

- Advanced Rheology + DMA methods
 - o TTS
 - o Humidity (RH) Units
 - Tribology

- Higher humidity here results in slower drying (slower curing)
- Isothermal Oscillation Time experiment

Waters™

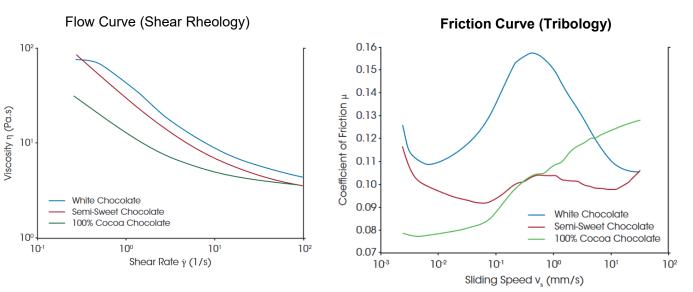
nstruments

Table 1: Summary of modulus crossover under different humidity

Relative Humidity (%)	10%	30%	60%
G _s Crossover Time (s)	338	485	1102
G _s Crossover Modulus (N/m)	0.057	0.056	0.057

Tribology

- Advanced Rheology + DMA methods
 - o TTS
 - o Humidity (RH) Units
 - o <u>Tribology</u>



- A viscosity flow curve gives information on the resistance to flow
- Tribology gives information on the coefficient of friction as a function of <u>sliding speed</u> and <u>load force</u>
- Four different configurations are offered, representative of different surface to surface interfaces

Tribology

Waters[™] |

- Advanced Rheology + DMA methods
 - o TTS
 - o Humidity (RH) Units
 - o <u>Tribology</u>

 Although viscosity data suggests limited differences in the flow behavior of the various chocolates, Tribology demonstrates considerable difference in mouthfeel

TA Website – Other Resources

Tech Tips

Relative Humidity Rheomete

Ĩ

Single Cantilever

Installation &

Calibration - DMA 950

1

Calibration - DMA 950

Three Point Bend Clamp Installation 8 Calibration for the Calibration for the UV Accessory on the Ares DM4850 G2 Pheometer

Linear Film Tension mp for DMA using the ARES-G2

Frequency Sweep Tests for RPA Flex and RPA Elite Pre-Shearing

ring This otropy The Double Wall Ring & Of A Sample- TA TechTips Interfacial Measurements - TA

oading the Powder

Clamp on the Q800

DMA with 35mm Dual Cantilever Clamp

Applications Notes Library

Applications Notes Library

Our instruments are used in a variety of products, in multiple industries. The application notes below provide more detail on specific potential applications. You can search for specific app notes with the search field.

rheology] 261 lin					
Title	Product Category	Ref#	Link		
Hot Melt Adhesives	Rheology	AAN001	Download Note		
Generating Mastercurves	Rheology	AAN005e	Download Note		
Analytical Rheology	Rheology	AAN006e	Download Note		
Normal Stresses in Shear Flow	Rheology	AAN007e	Download Note		
Mischungsregein Komplexer Polyersysteme	Rheology	AAN008d	Download Note		
Mixing Rules for Complex Polymer Systems	Rheology	AAN008e	Download Note		
Application of Rheology of Polymers	Rheology	AAN009	Download Note		
Synergy of the Combined Application of Thermal Analysis and Rheology Monitoring and Characterizing Changing Processes in Materials	Rheology	AAN010e	Download Note		

Seminar Series: Instant Insights

Seminars:

Thermal Analysis and Rheology

Medical Device and Biomaterials Testing

Elastomers and Rubber Compounds

TRIOS AutoPilot & TRIOS Guardian

Thermal, Rheological and Mechanical Characterizations of Thermoset Tianhong (Terri) Chen, Ph.D.

Thermosetting materials, such as epoxy, have been widely applied in many areas including automotive, aerospace and electronics industries in the form of surface coating, structural adhesives, advanced composites and packaging materials.

View Archive

Advancements in the Characterization of Pharmaceuticals by DSC

Jason Saienga, Ph.D.

Differential Scanning Calorimetry is a simple, yet powerful technique to gain a broad understanding of the characteristics of pharmaceutical materials, from the crystalline structure that exists to the compatibility of a specific formulation.

View Archive

Justin Wvnn

In this presentation we will demonstrate accurate and high-throughput methods to measure the critical heat transfer properties of thermal diffusivity and thermal conductivity.

Thank You!