Strategies for Better DSC Data

October 4, 2016 Leicester October 11, 2016 Antwerp

Els Verdonck

everdonck@tainstruments.com

Introduction

- Quantification of instrument performance
- Optimization of experimental parameters
- Proper interpretation of datacurves

DSC Technique

- Differential Scanning Calorimetry is a technique that measures the temperatures and heat flows associated with transitions in materials as a function of time and temperature in a controlled atmosphere.
- These measurements provide quantitative and qualitative information about physical and chemical changes that involve endothermic or exothermic processes, or changes in heat capacity.

Know Your Instrument Capabilities by Measuring Them

Baseline = empty cell run, <u>without sample</u>

Cooling Rate

Heat Flux DSC Instrument (Q20 – Discovery DSC 25)

Tzero DSC Instrument (Q2000 – Discovery DSC 250 & 2500)

- Flatter baseline
- Better resolution
- Direct Cp

Thermal resistance & heat capacity imbalance

Heating Rate difference

Measure Your Instrument Baseline !

$$q = -\frac{\Delta T}{R_r} + \Delta T_0 \left(\frac{1}{R_s} - \frac{1}{R_r}\right) + (C_r - C_s) \frac{dT_s}{dt} - C_r \frac{d\Delta T}{dt}$$

Detecting Small Amounts of Amorphous Structure in "Crystalline" Sucrose

PVC Degree of Gelation

Perform repeatability test for each sample if you want to be sure that the small differences between the 4 different samples are 'real'

Quantify the Heating and Cooling Envelope

Deriv. Temperature (°C/min)

Glass Transition Analysis

Glass Transition Analysis, with Scanning Rates

TA

Optimize the Experimental Parameters

- ✓ Type of cup
- Sample preparation
- ✓ Reference cup
- ✓ Sample size
- ✓ Temperature program

DSC Pan Types

- Standard Pans: Appropriate for most solid samples (films, powders, metals, polymer chip, etc)
- Hermetic Pans: Designed primarily for samples which may evolve volatiles during heating (P > 2 bar -> leaking !)
 - Can be used for small quantities of liquids as well
- ✓ Specialty Pans:
 - High Volume Pans: Used for larger quantities of liquids and solutions (up to 40 bar)

High Pressure Pans: Used for energetics or materials which evolve large quantities of gas (up to 100 bar)

Effect of Water (Plasticizer) on Tg of Nylon 6

TA

It Can Matter a Lot What Pan You Use

TA

PVC Degree of Gelation: Influence of Sample Shape and Cup

Tg of Coating on Glass with Compensation on Reference Side (Uncoated Glass)

Sample Size & Heating Rate

$dQ/dt = Cp \cdot dT/dt + f(t,T)$

- ✓ Sample size is a trade off between sensitivity and resolution
 - Larger samples = more sensitivity
 - Smaller samples = better resolution
- ✓ Heating rate is a trade off between sensitivity and resolution
 - High heating rate = more sensitivity
 - \checkmark Low heating rate = better resolution
- ✓ Use the smallest sample size which does not compromise the required sensitivity. Smaller sample means less thermal gradients.
- ✓ Start with a heating rate of 10°C/min, good compromise between minimizing thermal gradients & fast result.

Effect of Heating Rate on Tg of PP

TA

Fingerprinting of PVDF after Different Polymerization Conditions

Fingerprinting of PVDF after Different Polymerization Conditions

Heat Flow (W/g)

Fingerprinting of PVDF (Copolymer) Effect of DSC Heating Rate

Help in Proper Interpretation of Datacurves

✓ Modulated DSC MDSC

✓ Use of Derivative Curves

Modulated DSC Heating Rate

MDSC to Separate Overlapping Events

Total Heat Flow Reversing Heat Flow Non-Reversing Heat Flow

• All Transitions

- •Heat Capacity Cp
- Glass Transition Tg
- Most Melting

- •Enthalpy Recovery
- Evaporation
- Crystallization
- •Thermoset Cure
- Decomposition
- Some Melting

DSC of Polymer Blend

MDSC of Polymer Blend

Tg Not Easily Determined on First Heat

TA

Reversing Heat Flow Easily Shows Tg

DSC for Drug Microspheres

MDSC for Drug Microspheres

Use of Derivative: Indicates 2 Tg's

www.tainstruments.com

Welcome to New Line of Discovery DSC's

DSC2500, DSC250, DSC25

with AS

without AS

Overview of DSC's

model	technology	cell	MDSC	auto- sampler	direct Cp	reso- lution	base- line	software
Q20	Heat flux T1	Tzero cell	option	option <u>no retrofit</u>	no		flat	Advantage
Q200	Tzero T4	Tzero cell	option	option	no	better	flattest	Advantage
Q2000	Adv Tzero T4P	Tzero cell	option	option	yes	best	flattest	Advantage
Discovery	Adv Tzero T4P	Diffusion bonded	included	included	yes	best	flattest	Trios
DSC25	Heat flux T1	Fusion cell	included	option	no		flat	Trios
DSC250	Tzero T4	Fusion cell	included	option	no	better	flattest	Trios
DSC2500	Adv Tzero T4P	Fusion cell	included	included	yes	best	flattest	Trios

Thank you for your attendance

