WIFI: Hilton Honors Password: Igbpremium

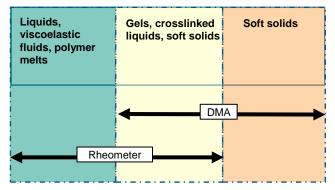
Pacific Heat and Wave Flow: Day II Section I: Rheology & DMA Theory and Instrumentation

Keith Coasey PhD Rheology Applications Engineer TA Instruments – Waters LLC

Rheology: An Introduction

Rheology is the science of flow and deformation of matter (primarily fluids)

Dynamic mechanical analysis is the science of flow and deformation of matter (primarily solids)



What does a Rheometer (or DMA) measure?

Waters[™] |

- A <u>rheometer</u> can provide information about the material's:
 - Viscosity defined as a material's resistance to flow and is a function of shear rate or stress, with time and temperature dependence
 - **Viscoelasticity** is a property of a material that exhibits both viscous and elastic character. Measurements of G', G", tan δ with respect to time, temperature, frequency and stress/strain are important for characterization
- Samples liquids, semi-solids and soft solids
 - A <u>DMA</u> can provide information about the material's:
 - Viscoelasticity Measurements of G', G", tan δ with respect to time, temperature, frequency and stress/strain are important for characterization
 - Samples solids, composites, elastomers, soft solids

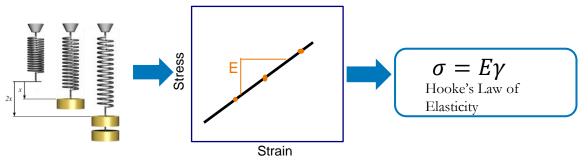
- Rheology and DMA are complementary
- DHR Rheometers can do both

What Rheology (or DMA) Measures

Viscoelasticity (Liquids to Solids)

Why Rheology Matters

- What is Viscosity? Resistance to flow
- Why do we care? The various fluids we use day to day have to be processed (pumped, poured, mixed, etc.) whether it is water, cake batter, molten polymer, oil, etc.
- Viscosity can be used as a measure of shelf stability, molecular weight, and energy to process
- Rheology can give us viscosity data and much more

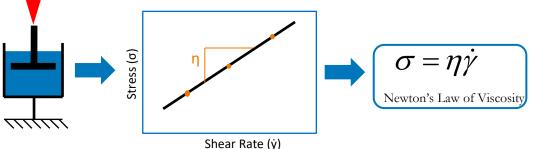


4

Basic Model of Elasticity

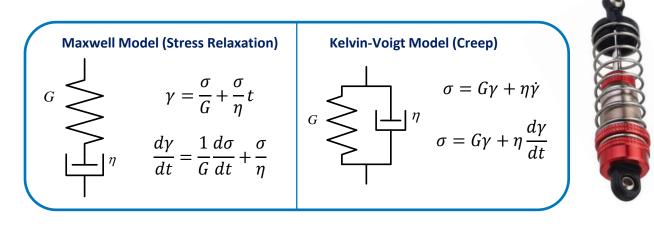
What is Elasticity?

- In 1660, Robert Hooke developed his "True Theory of Elasticity"
 - Model spring
 - Observations stress is linearly proportional to the deformation
 - Young's Modulus is the slope of the stress and strain curve


Basic Model of Viscosity

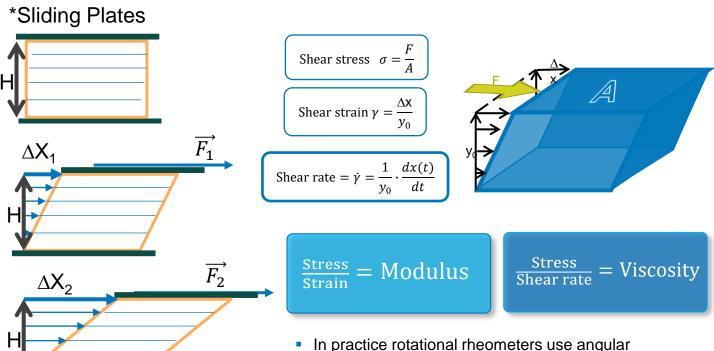
• In 1687, Isaac Newton studied the flow behavior of liquids

- Model dashpot
- Observations stress is linearly proportional to shear rate
- Viscosity is the ratio of the stress and rate curve



Waters™

5


• Viscoelastic Materials: Force depends on both deformation and rate of deformation and vice versa

Waters |

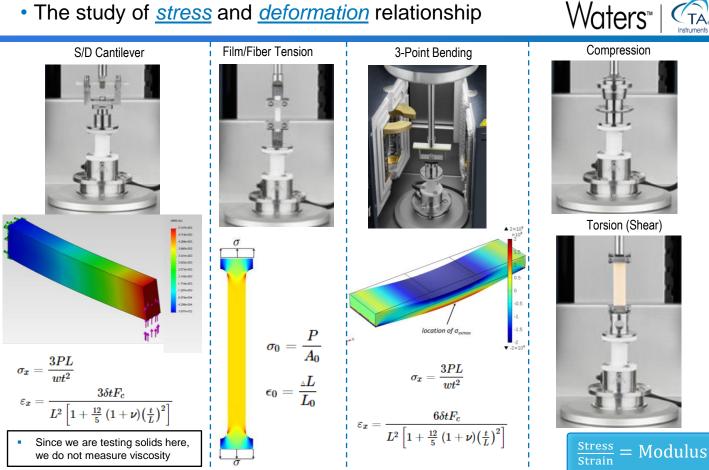
How do Rheometers Work?

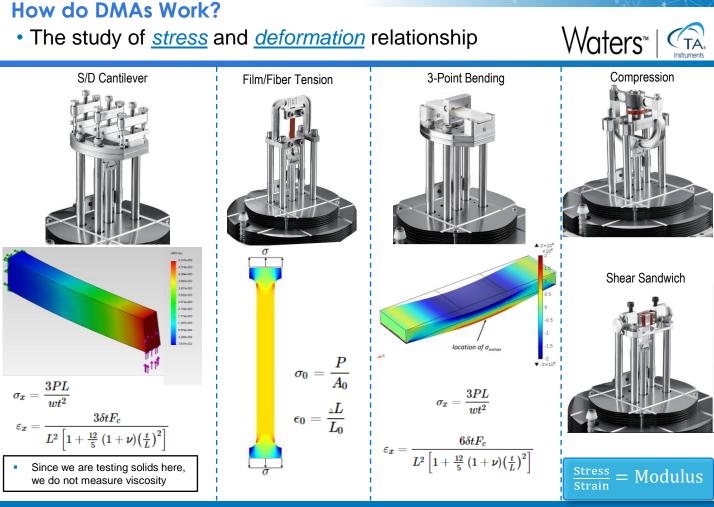
The study of <u>stress</u> and <u>deformation</u> relationship

- In practice rotational rheometers use angular displacement and angular strain
- This allows for high shear rates and infinite angular displacement

Waters[™]

Variety of DMA clamps


Cantilever, Tension, Three-point bend, compression



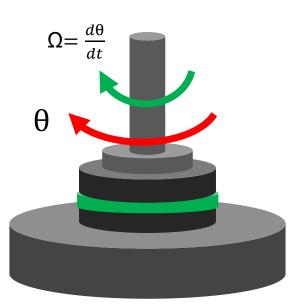
In DMA, we characterize the relationship between stress and strain with various geometries

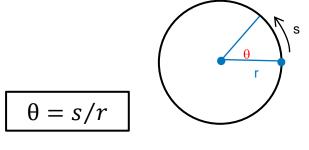
How do DMAs Work?

The study of <u>stress</u> and <u>deformation</u> relationship

Instrumentation

- In a rheological measurement, stress; strain and strain rate (shear rate) are all calculated signals
- The raw signals behind the scene are torque; angular displacement and angular velocity


Fundamentally, a rotational rheometer will apply or measure:

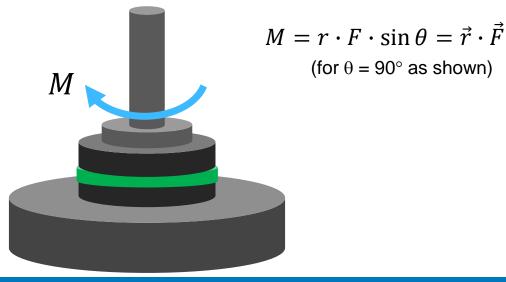

- 1. Torque (Force)
 - 2. Angular Displacement
 - **3.** Angular Velocity

Measured parameter: angular displacement

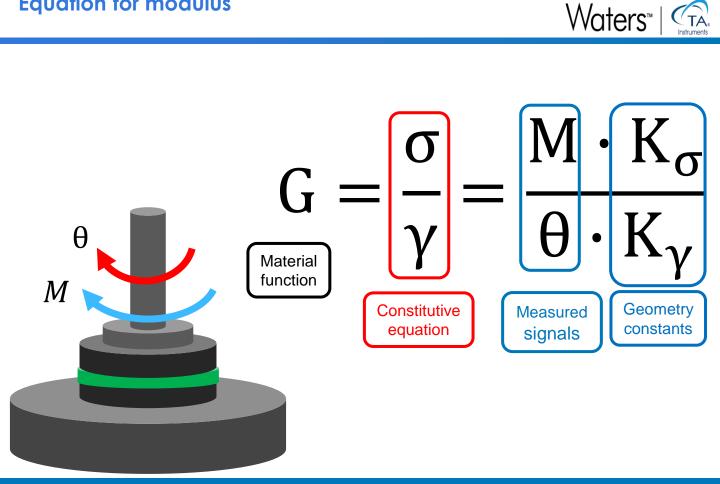
- Angular displacement (θ) is the angle, in radians, through which an object moves on a circular path
 - s = arc length (or linear displacement)
 - r = radius of a circle
 - Conversion: degrees = radians \cdot 180/ π

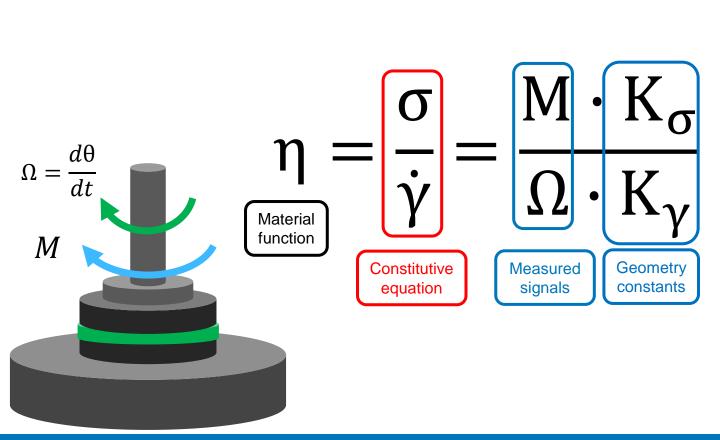
$$\Omega = \frac{d\theta}{dt} = \frac{1}{r}\frac{ds}{dt}$$

Measured parameter: torque

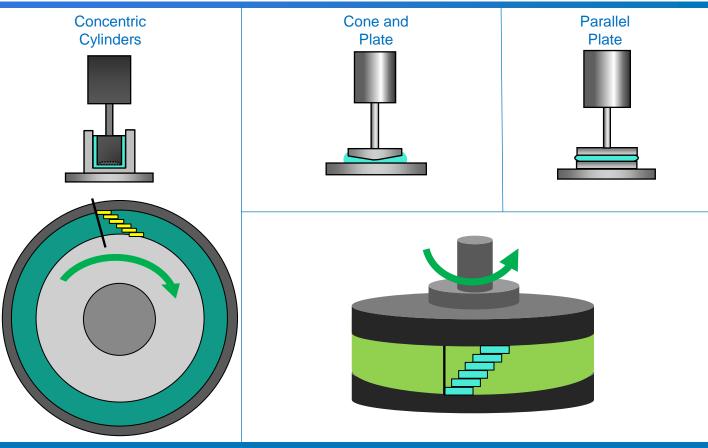


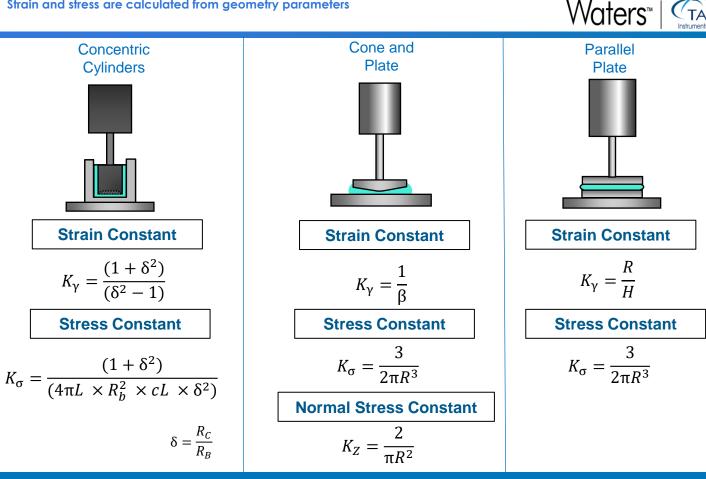
 Torque (M) is a measure of how much a force (F) acting on an object causes that object to rotate.


> The object rotates about an axis, called the pivot point The distance (r) from the pivot point to the point where the force acts is called the moment arm


•The angle (θ) at which the force acts at the moment arm

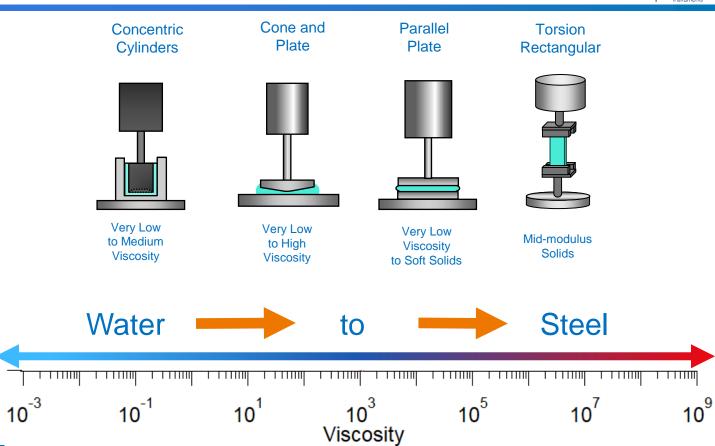
(for $\theta = 90^{\circ}$ as shown)

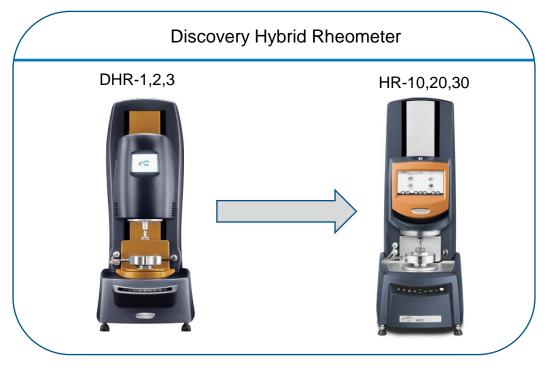

Equation for modulus


Waters™

(TA Instruments Geometry Options – Instrument measures Displacement and Torque Strain and stress are calculated from geometry parameters Waters™

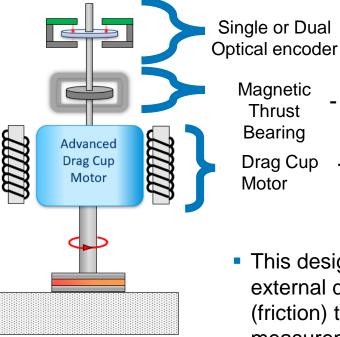
Geometry Options – Instrument measures Displacement and Torque


Strain and stress are calculated from geometry parameters


TA

Geometry Options – Testing across a wide range of viscosity

Discovery Hybrid Rheometers by TA


Controlled Stress Design Single Head Waters™

TA

Single head or CMT DHR -Combined motor & transducer

- Measures Displacement (strain) and Velocity (shear rate)
- Provides both air and magnetic fields to minimize friction
- Drag Cup Motor
 - Measures Torque (Stress)

This design minimizes external disturbances (friction) to the measurement

DMA Geometry Options – Testing across a wide range of viscosity

- Thin films
- Elastomers
- Fibers

- Supported thermosetting resins
- Elastomers

 Amorphous or lightly-filled thermoplastic materials **3-Point Bending**

- Metals
- Ceramics
- Highly filled thermosetting polymers
- Highly filled and crystalline thermoplastic polymers

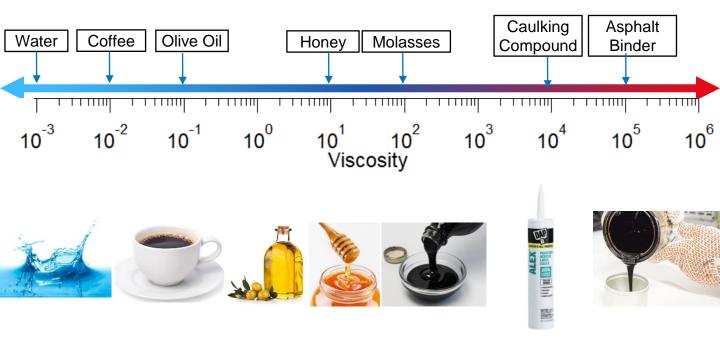
- Gels
- Weak elastomers

How do DMAs Work? Waters[™] | Film/Fiber Tension F ΔΧ F 7 5

F – force

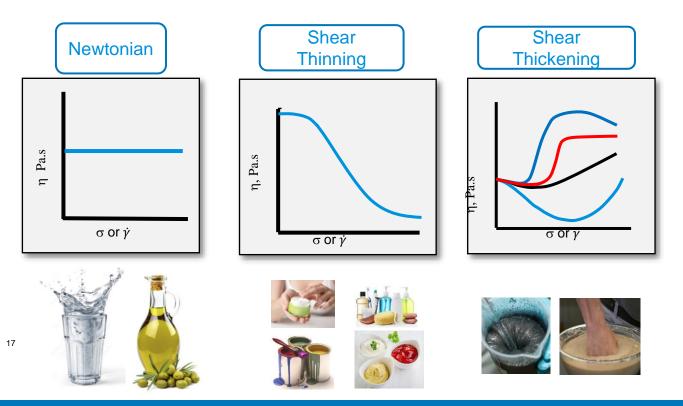
 Δx - displacement

Shear strain
$$\gamma = \frac{\Delta x}{y_0}$$
 Shear stress $\sigma = \frac{F}{A}$



1. Flow (Steady Shear) Tests

26



- Different liquid materials in the world can have significantly different viscosities, therefore, they also exhibit different flow behaviors.
- Unless a fluid is Newtonian, it does not have a single viscosity value!

Background on Viscosity Values and Flow Curves

Newtonian and non-Newtonian

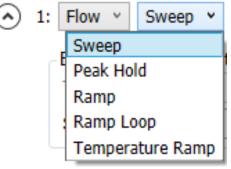
Viscosity Behaviors

Waters™

Instruments

Viscosity Curves of Various Fluids

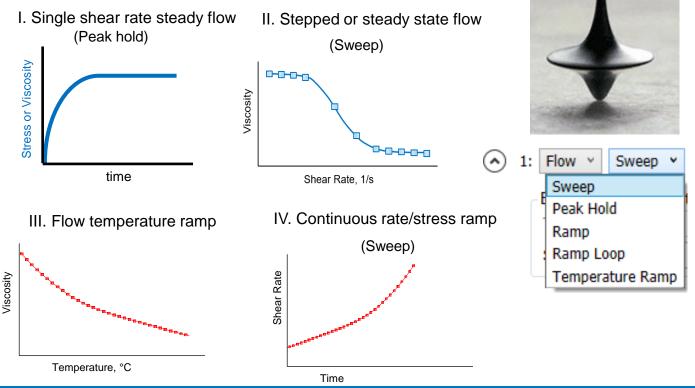
 10^{4} -□- starch 10^{3} –o– peanutoil -△- 0.05% polyacrylamide solution 10^{2} Viscosity η [Pa s] -⊽- PIB at 20°C sirup $-\nabla$ dama and a construction of the construction of 10¹ ->- Cocoa butter lotion -⊲- Shower gel −▷− Co-polymer 240 °C 10° 10⁻¹ 10^{-2} 1E-3 0.01 0.1 100 1000 10000 10 Shear rate y [1/s]



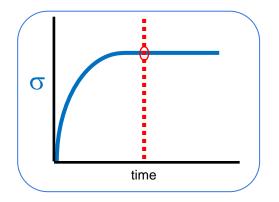
Common rheological methods for measuring viscosity of liquids

- Single rate/stress flow
- Continuous rate/stress ramp
- Stepped or steady state flow
- Flow temperature ramp
- Steady Shear
 - Continuous rotation of upper plate
 - Destroys structure of fluid
 - Provides information about sample when flowing

Waters™

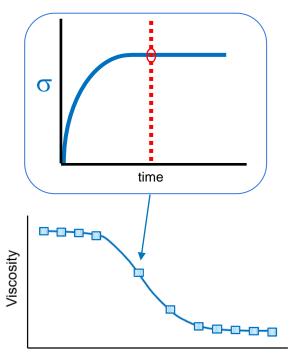


Basic Rheological Methods (Steady Shear)



Common rheological methods for measuring viscosity of liquids

Peak Hold– Steady State Flow


- In peak hold, a sample is held at one shear rate
- The viscosity here would be taken from the plateau

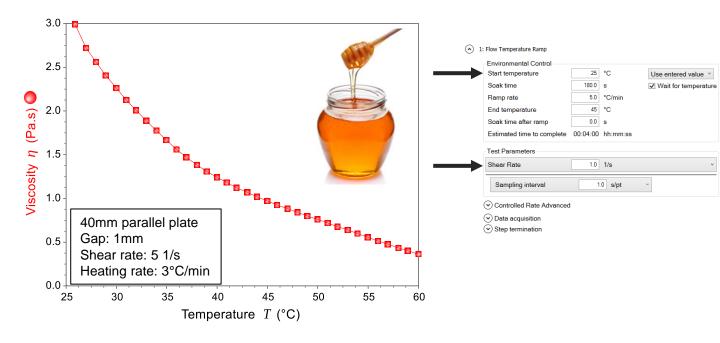
- viscosity is measured when steady state has been reached
- In TRIOS: Flow Peak Hold

1:	USES Viscosity at a shear rate Structure Recovery Preshear Flow Peak Hold ✓
	Environmental Control
	Temperature 25 °C Inherit Set Point
	Soak Time 180.0 s 🗹 Wait For Temperature
	Test Parameters
	Duration 60.0 s
→	Shear Rate 1.0 1/s v
	Inherit initial value
	Sampling interval 1.0 s/pt ~
	Controlled Rate Advanced
	O Data acquisition
	Step termination

Flow Sweep – Steady State Flow

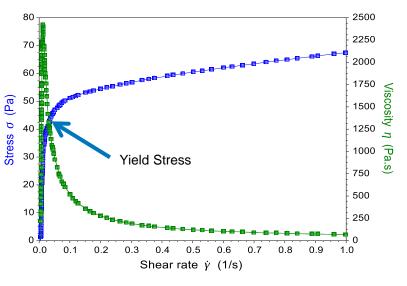
- Step stress or shear rate from low to high on a logarithmic scale
- At each step, viscosity is measured when steady state has been reached
- In TRIOS: Flow Sweep

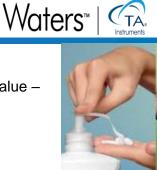
<u>USES</u>


- Viscosity Flow Curves
- Yield Stress Measurements

1: Flow Sweep

Environmental Control	
Temperature 25	°C 🗌 Inherit Set Point
Soak Time 180.0	s 🗹 Wait For Temperature
Test Parameters	
Logarithmic sweep	Ŷ
Shear rate	0.01 1/s to 100.0 1/s ×
Points per decade	5
Steady state sensing]
Max. equilibration time	60.0 s
Sample period	5.0 s
% tolerance	5.0
Consecutive within	3
Scaled time average	1

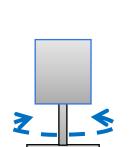

Viscosity of Honey: Temperature Dependence


Measure Yield Stress of a Body Lotion

 Body lotion does not flow unless the applied stress exceeds a certain value – the yield point.

 \bigcirc

1: Flow v Ramp v			
Environmental Control			
Temperature 25 °C 🗌 Inherit Set Point			
Soak Time 180.0 s 🗹 Wait For Temperature			
Test Parameters			
Duration 60.0 s			
Mode			
● Linear) Log			
Initial shear rate 1.0 1/s to 100.0 1/s ~			
Inherit initial value			
Inherit duration			
Sampling interval 1.0 s/pt ~			
Controlled Rate Advanced			
⊙ Data acquisition			
Step termination			


2. Oscillation Tests

36

Dynamic Oscillatory Tests

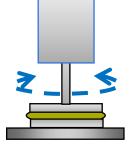
- Apply a sinusoidal strain to the sample at a certain frequency
- Monitor sample response in stress
- The shift between the input strain and output stress is the phase angle

Phase angle
$$\delta$$

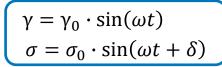
 $0^{\circ} < \delta < 90^{\circ}$
Stress, σ^{*}
 $\gamma = \gamma_{0} \cdot \sin(\omega t)$
 $\sigma = \sigma_{0} \cdot \sin(\omega t + \delta)$
Strain, ϵ

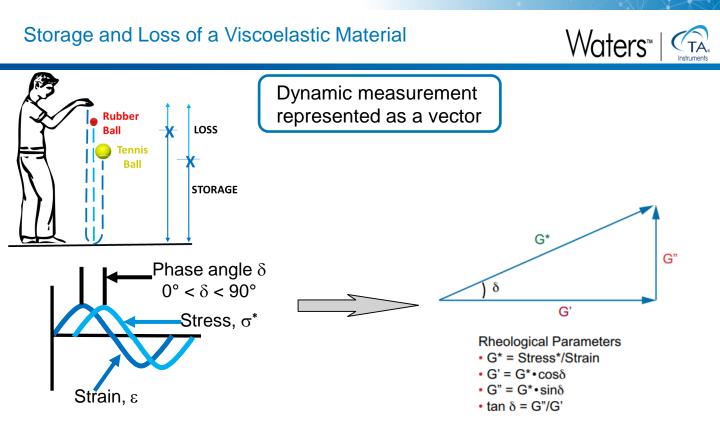
Dynamic Oscillatory Tests

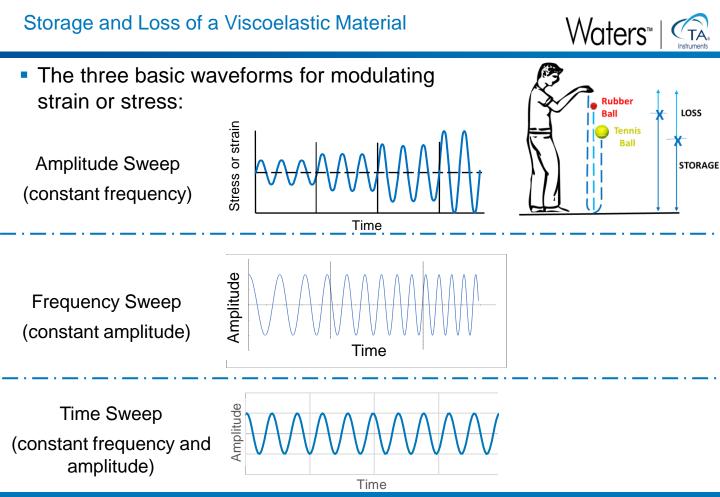
- If deformation is small (within the Linear viscoelastic region) the structure of the sample is preserved
- Provides structural viscoelastic properties of sample when at rest



Small amplitude Oscillatory shear:


Steady Shear:




Waters[™]

 Structure is preserved Structure is destroyed

 We input either a stress or a strain waveform, and measure the phase angle between the resultant stress and strain

©2022 Waters Corporatio

Viscoelastic Parameters

<u>Complex Modulus:</u> Measure of materials overall resistance to deformation

Elastic (Storage) Modulus: Measure of elasticity of material and ability to store energy

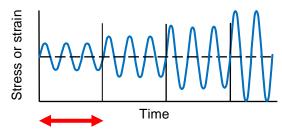
<u>Viscous (loss) Modulus:</u> The ability of the material to dissipate energy

Tan Delta: Measure of material damping

<u>Complex Viscosity:</u> Viscosity measured in an oscillatory experiment (ω in rad/s)

$$G^* = \left(\frac{\text{Stress}^*}{\text{Strain}}\right)$$

 $G' = \left(\frac{Stress^*}{Strain}\right)\cos\delta$


 $G'' = \left(\frac{Stress^*}{Strain}\right) \sin \delta$

$$\tan \delta = \left(\frac{G'}{G'}\right)$$

$$\eta^* = \left(\frac{G^*}{\omega}\right)$$

Dynamic Strain or Stress Sweep (amplitude sweep)

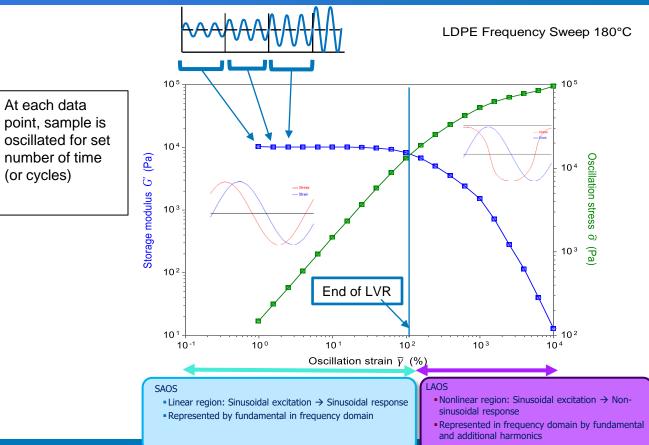
Instrument oscillates at a set amplitude for each data point, and then moves to the next amplitude

- The material response to increasing deformation amplitude (strain or stress) is monitored at a constant frequency and temperature
- In TRIOS: Amplitude

1: Oscillation Amplitude

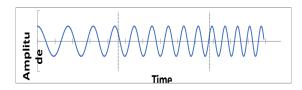
<u>USES</u>

- Measure sample LVR
- Measure yield stress
- Measure non-linear viscoelastic properties (LAOS)


Environmental	Control -						
Temperature	25	°C 🗌	Inherit Set	Point			
Soak Time	180.0 s 🗹 Wait For Temperature						
Test Paramete	rs						
Angular frequ	uency		10.0	rad/s	÷		
Logarithmic s	sweep						~
Strain %			0.01	% to	100.0	%	~
Points per de	ecade		5				

Dynamic Strain or Stress Sweep (amplitude sweep)

Linear and Non-linear Viscoelasticity



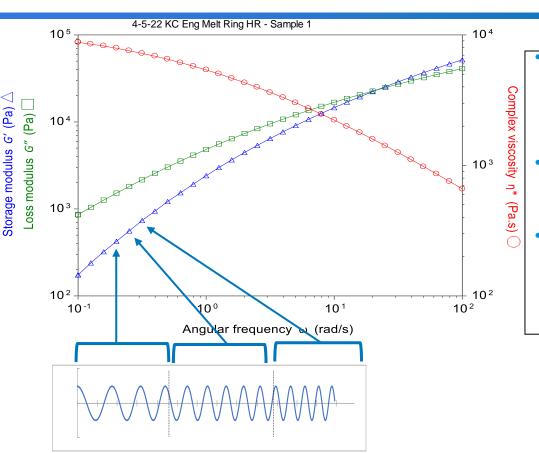
Frequency Sweep

- The material response to increasing frequency (rate of deformation) is monitored at a constant amplitude (strain or stress) and temperature.
- In TRIOS: Frequency

1: Oscillation Frequency

Environmental Control					
Temperature	25 °	°C	Inherit Set Point		
Soak Time	180.0 s	6	✓ Wait For Temperature		

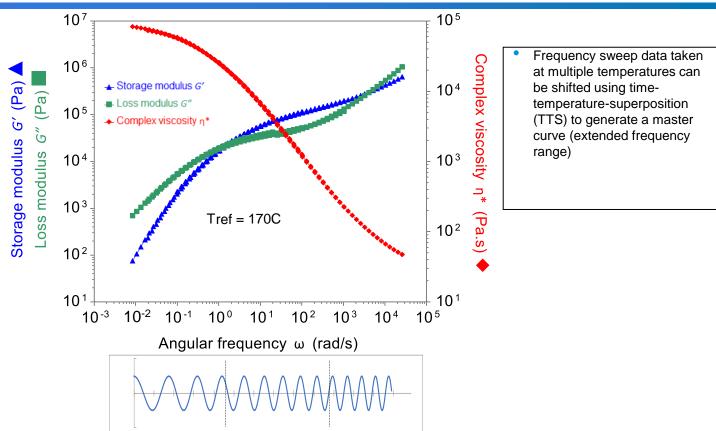
Test Parameters


Strain %	0.1 %	~
Logarithmic sweep		×
Angular frequency	100.0 rad/s to 0.1 rad/s	×
Points per decade	5	

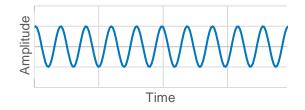
<u>USES</u>

- Measure polymer relaxation
- Measure polymer Mw/ MWD
- Scouting differences of viscoelastic properties between formulations

Frequency Sweep

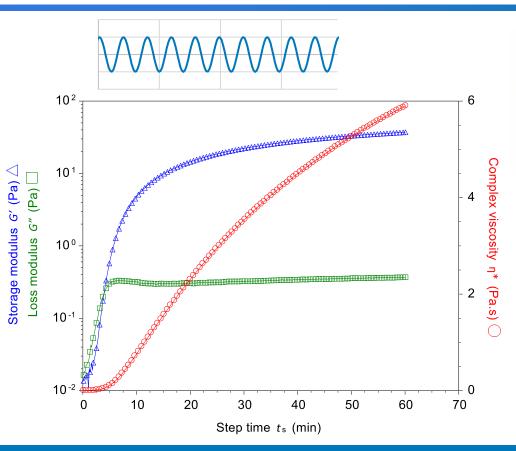


- Complex Viscosity, storage modulus, loss modulus, and tan delta are obtained as a function of angular frequency
- This is an analogue to the flow sweep test, with the addition of viscoelasticity
- Here we consider angular frequency and complex viscosity, rather than shear rate and apparent viscosity


Frequency Sweep (Cont.)

Oscillation Time

- The material response is monitored at a constant amplitude (strain or stress) and frequency.
- In TRIOS:Time

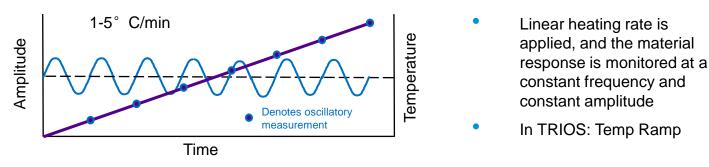

<u>USES</u>

- Sample Stability (Settling, thermal degradation)
- Sample recovery after shear (Thixotropy)
- Structural changes with time (viscoelasticity)
- Curing, Gelation

\bigcirc	3:	Oscil	lation	Time
\odot	3:	Oscil	lation	Lime

- Environmental Contr Temperature	10	°C	Inherit Set Point
Soak Time	0.0	S	Wait For Temperature
Test Parameters —			
Duration	3600.0	S	
Sampling rate	1.0	pts/s	~
Strain %	2.5	%	~
Single point			~
Frequency	1.0	Hz 🗸	

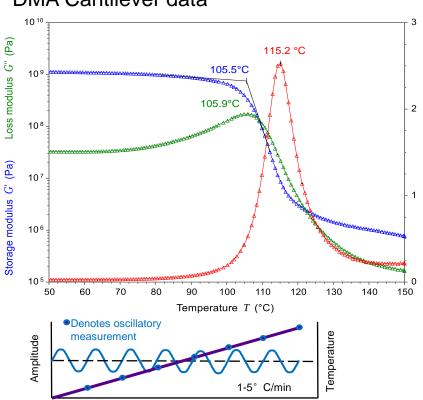
Oscillation Time



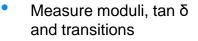
- Gelatin solution was quench cooled from 75°C to 10°C
- The oscillation time sequence was started once the sample reached 10°C
- The gelation of the solution is monitored as a function of time, at constant frequency and amplitude

Oscillation Temperature Ramp

<u>USES</u>


- Measure material's viscoelastic properties vs. temperature
- Measure glass transition and sub-ambient transition temperatures

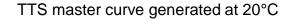
1: Oscillation Temperature Ramp


Environmental Control			
Start temperature	-100	°C	Use entered value $\ \ {}^{\vee}$
Soak time	180.0	s	✓ Wait for temperature
End temperature	150	°C	
Soak time after ramp	0.0	s	
Ramp rate	3.0	°C/min	~
Estimated time to complete	01:23:20	hh:mm:ss	
Test Parameters			
Maximize number of points			
Maximize number of points			Ŷ
Strain %	0.05	%	~
	0.05	%	

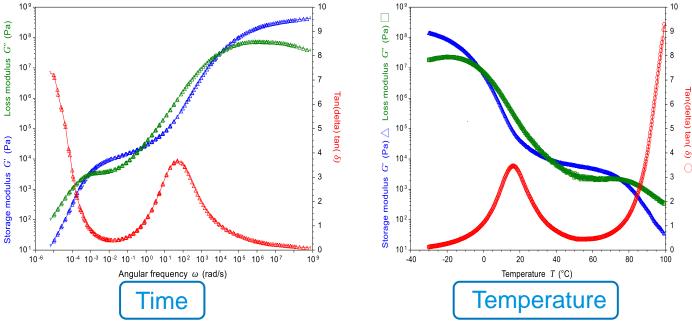
Oscillation Temperature Ramp

Waters[™] |

DMA Cantilever data


 ABS was heated from room temperature to 150°C

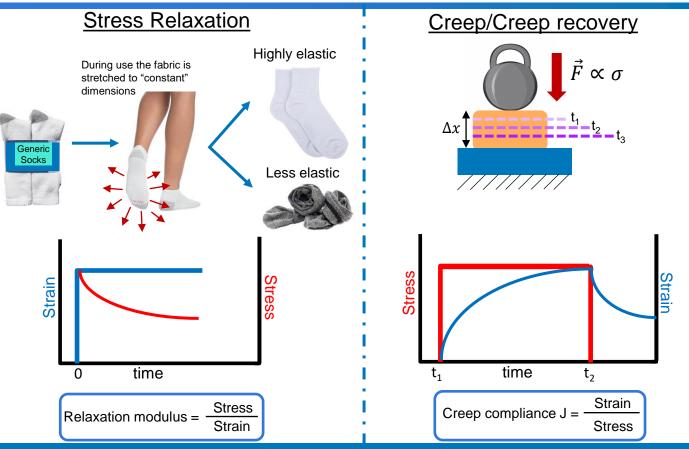
Tan(delta) tan(δ)


 The glass transition temperature was analyzed using three methods: onset of the storage modulus, the peak of the loss modulus, or the peak in tan delta

Time-Temperature Superposition (TTS)

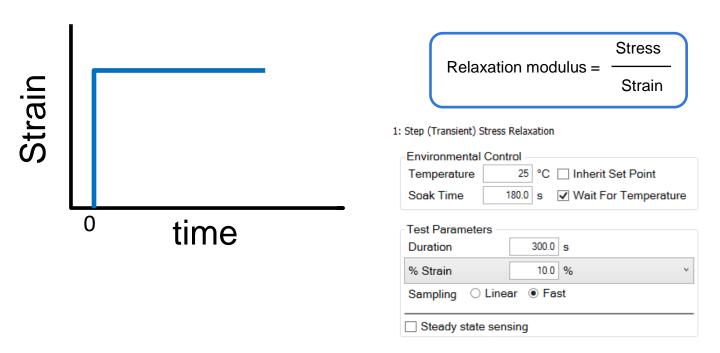
Dynamic temperature ramp

- We reviewed <u>Oscillation Temperature Ramps</u> and <u>Oscillation Frequency Sweeps</u>
- <u>Time (frequency) and Temperature have an inverse effect on the complex properties for polymers</u>

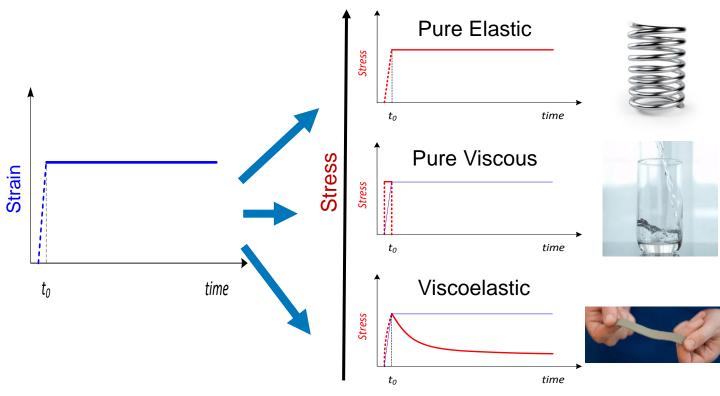


Rheology Theory and Experimental Designs

3. Transient Tests (Creep and Stress Relaxation)


Transient Tests

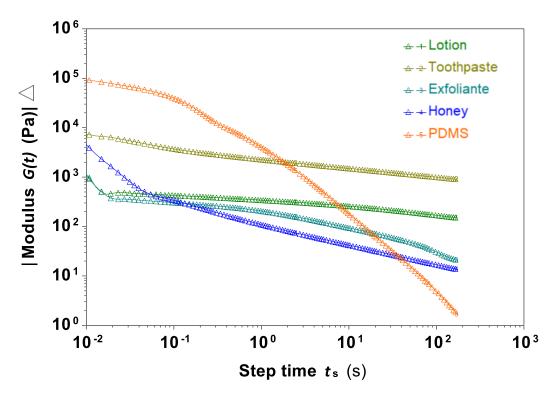
Waters[™] |



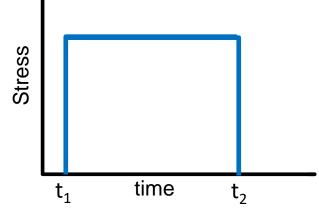
- Strain is applied to sample instantaneously (in principle) and held constant with time.
- Stress is monitored as a function of time $\sigma(t)$.

Stress Relaxation

- Strain is applied to sample instantaneously (in principle) and held constant with time.
- Stress is monitored as a function of time $\sigma(t)$.



Stress Relaxation



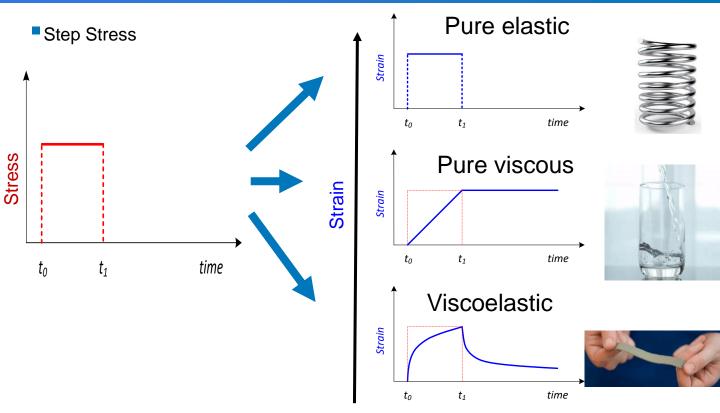
Test using a 40mm sandblasted parallel plates at a strain of 5%

Creep Recovery

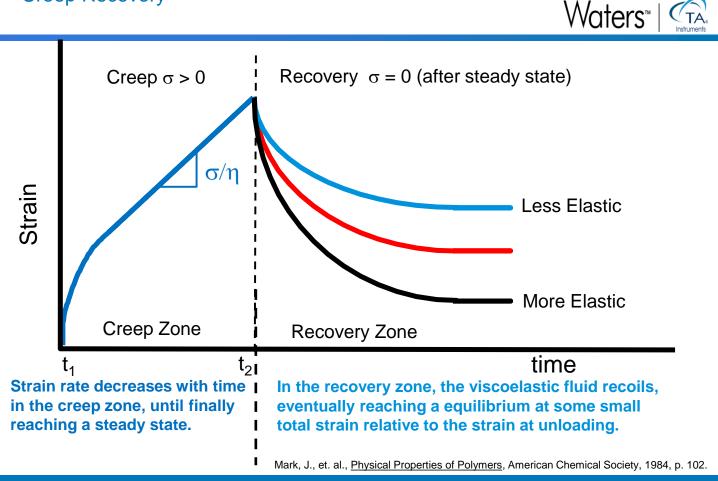
- Creep: Stress is applied to sample instantaneously at t₁, and held constant for a specific period of time. The strain is monitored as a function of time (γ(t) or ε(t))
- Recovery: Stress is reduced to zero at t₂, and the strain is monitored as a function of time (γ(t) or ε(t))

	Strain
Creep compliance J =	Stress

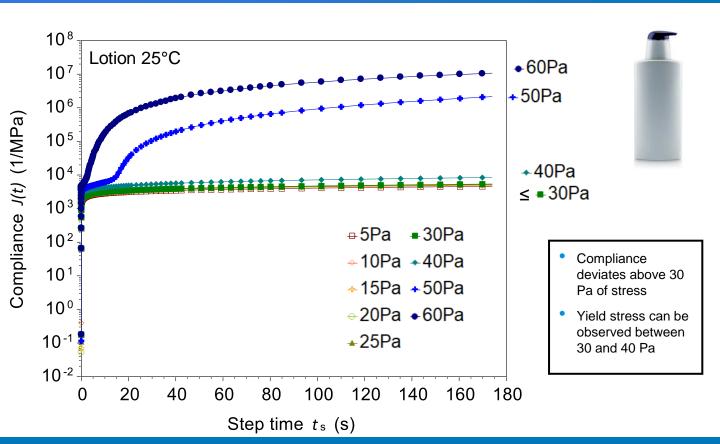
1: Step (Transient) Stress Relaxation


Environmental Control				
Temperature	25	°C	Inherit Set Point	
Soak Time	180.0	s	✓ Wait For Temperature	

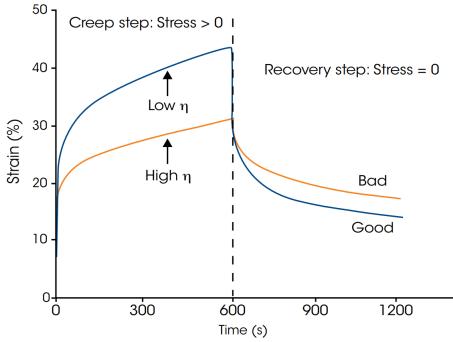
Test Parameters	3			
Duration	300.0 s			
% Strain	10.0 %	~		
Sampling ○ Linear ● Fast				
Steady state sensing				


Creep Recovery

Waters™



Creep Recovery



Creep (Yield Stress)

Waters[™]

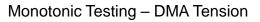
Creep Recovery (Elasticity)

Waters™ | 🕰

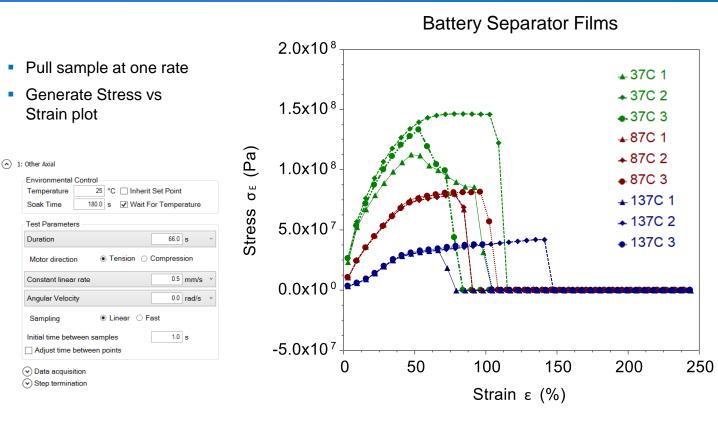
Overlapping tests with the Rheometer

- Creep and Stress Relaxation
- Oscillation tests

Unique to DMA (Both DHR and DMA850)


Monotonic testing (pull to failure at a specified rate)

Glassv Slightly Solid Flexible Behavior **Behavior** Rubbery Flexible **Behavior** Melt/Liquid Modulus **Behavior** Rheometers (E' or G') (E" or G") Temperature


Unique to DMA850

• Fatigue Testing

DMA Testing modes

TA Website – Other Resources

Tech Tips

Installation & Relative Humidity

Single Cantilever

Installation &

Calibration - DMA 850

Shear Sandwich Clamp Three Point Bend Installation & Calibration for the Discovery DMA 850 DM4850

Linear Eilm Tension mp for DMA using the ARES-G2

Calibration - DMA 850

Frequency Sweep Improving Structures Tests for RPA Flex and Fluid Measurements w/ Pre-Shearing

The Double Wall Ring & Of A Sample- TA TechTips Interfacial Measurements - TA

Calibration for the UV Accessory on the Ares

G2 Rheometer

ading the Powde

Clamp on the Q800

DMA with 35mm Dual Cantilever Clamp

Applications Notes Library

Applications Notes Library

Our instruments are used in a variety of products, in multiple industries. The application notes below provide more detail on specific potential applications. You can search for specific app notes with the search field.

rheology 2					
Title	Product Category	Ret#	Link		
Hot Melt Adhesives	Rheology	AAN001	Download Note		
Generating Mastercurves	Rheology	AAN005e	Download Note		
Analytical Rheology	Rheology	AAN006e	Download Note		
Normal Stresses in Shear Flow	Rheology	AAN007e	Download Note		
Mischungsregein Komplexer Polyersysteme	Rheology	AAN008d	Download Note		
Mixing Rules for Complex Polymer Systems	Rheology	AAN008e	Download Note		
Application of Rheology of Polymers	Rheology	AAN009	Download Note		
Synergy of the Combined Application of Thermal Analysis and Rheology Monitoring and Characterizing Changing Processes in Materials	Rheology	AAN010e	Download Note		

Seminar Series: Instant Insights

Seminars:

Thermal Analysis and Rheology

Medical Device and Biomaterials Testing

Elastomers and Rubber Compounds

TRIOS AutoPilot & TRIOS Guardian

Thermal, Rheological and Mechanical Characterizations of Thermoset

Tianhong (Terri) Chen, Ph.D.

Thermosetting materials, such as epoxy, have been widely applied in many areas including automotive, aerospace and electronics industries in the form of surface coating, structural adhesives, advanced composites and packaging materials.

Advancements in the Characterization of Pharmaceuticals by DSC

Jason Saienga, Ph.D.

Differential Scanning Calorimetry is a simple, yet powerful technique to gain a broad understanding of the characteristics of pharmaceutical materials, from the crystalline structure that exists to the compatibility of a specific formulation.

View Archive

In this presentation we will demonstrate accurate and high-throughput methods to measure the critical heat transfer properties of thermal diffusivity and thermal conductivity.

Thank You!