

Pacific Heat and Wave Flow: Day II Section II: Intermediate Rheology Methods

Keith Coasey PhD Rheology Applications Engineer TA Instruments – Waters LLC

Recall – Rheometer Geometries

Assess material to test

- How to Select a geometry configuration for a material?
 - •Estimate sample viscosity concentric cylinder, plates, or torsion plate size
 - Volume requirements- concentric cylinder requires 6-25mL of sample depending on rotor, plates require much less
 - Particle size, settling or mixing necessary particles must be less than 1/10th of the gap size
 - Loading procedure for structured substances (Pre-shear)
 - Evaporation seal sample edge, solvent trap, or RH accessory
 - Surface slip and edge fracture geometry surface: smooth sandblasted, crosshatched

Concentric Cylinders (or Cups) and Rotors (or Bobs)

Organization of talk

- We will cover applications from low to high viscosity materials
- Geometry and configuration considerations will be highlighted

40 mm

50 mm

Cross hatched

Smooth, Sandblasted, and

60 mm

Classes of Fluids

Waters™

Newtonian

Newtonian - Viscosity is independent of shear rate

- Non-Newtonian Viscosity is dependent on shear rate
 - Neat Fluid \cap
 - Polymer melt
 - Structured Fluid 0
 - Yield stress
 - Thixotropy •
 - Viscoelasticity •

Three categories of Structured Fluids

- Suspension
- Solid particles in a fluid
- Emulsion
- Fluid in a fluid

Foam

- Gas in a fluid (or solid)

Properties of Fluids

Rheology Applications

Neat Fluids

Classes of Fluids

- Water is possibly the most well-known Newtonian fluid
- Viscosity is 1 mPa*s at 20°C
- This is additionally observed for water-based formulations
- For a more complete flow curve, a concentric cylinder geometry is required
- For plates Use a large diameter geometry with a smaller gap

40-60mm parallel plates

- · Oil based fluids typically don't have the same surface tension effects at with water
- Geometry selection will come down to sample volume

- Viscosity is approximately 5000 Pa*s at 25°C
- Non-Newtonian Neat Fluid
- Honey is quite viscous and sticky, making it more suited to a plate geometry rather than a concentric cylinder configuration

Rheology Applications

Structured Fluids

Structured fluid properties Non-Newtonian \circ Yield stress 0 Thixotropic 0 Viscoelasticity 0 Thixotropy The fluid structure can have a yield Δt_{Rec} stress and a recovery time under shear at rest Shear removed $\sigma < \sigma_{\text{yield}}$ $\sigma > \sigma_{yield}$ Full recovery Partial recovery Δt_1 Δt_2 Yield aat High viscosity High viscosity Structure destroyed Viscosity & elasticity Elasticity Elasticity Shear thinning recover over time

Waters™

(TA

- Considerations for structured fluids
 - o Particle Sizes
 - Wall Slip
 - Viscosity

- Particle sizes must be less than 1/10th of the gap size
- Parallel Plates are best suited, since the gap can be varied

- Considerations for structured fluids
 - Particle Sizes

Parallel Plates:

Sandblasted

Concentric Cylinder:

- o <u>Wall Slip</u>
- Viscosity

 ΔX_0 $\overline{F_0}$

- We assume a fluid velocity of zero at the wall
- Slip is the occurrence of non-zero wall velocity

If using parallel plates:

- Use sandblasted or crosshatched plates
- Increase plate gap

If using concentric cylinder:

- Use sandblasted cup and rotor
- Use grooved cup with vane or helical rotor

Crosshatched

- Considerations for structured fluids
 - Particle Sizes
 - Wall Slip
 - o <u>Viscosity</u>

***Additionally noting surface tension effects for parallel plates

Waters™

Reference:Barnes, H.A., Hutton, J.F., and Walters, K., <u>An Introduction to Rheology</u>, Elsevier Science B.V., 1989. ISBN 0-444-87469-0

Waters[™]

General Viscosity Curve for Suspensions

Waters™

Characterization of Structured Fluids

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. Thixotropy
 - IV. Viscoelasticity (complex mechanical properties)

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. Thixotropy
 - IV. Viscoelasticity (complex mechanical properties)

Water Based Adhesives

- I. Flow Curve (Newtonian or Non-Newtonian)
- II. <u>Yield Stress</u>
- III. Thixotropy
- IV. Viscoelasticity (complex mechanical properties)

Common methods

- Stress ramp
- Stress sweep
- Shear rate ramp
- Dynamic stress/strain sweep

- Ramp between initial and final stress within time interval
- Rotational stress is stepped in increments
- Ramp between initial and final stress within time interval
- Oscillate at strain within LVR, then outside the LVR, and then back inside LVR

Note:

Yield behavior is a time dependent characteristic. Measured yield stress values will vary depending on experimental parameters

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. <u>Yield Stress</u>
 - III. Thixotropy
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stress ramp #1
 - Stress sweep
 - Shear rate ramp
 - Dynamic stress/strain sweep
- Stress ramp from 0 to 200 Pa in 60 seconds
- Yield is determined at the point where viscosity shows a peak

Waters[™] |

(TA)

Shear rate

S

(1/s)

Waters[™] |

• Overall, we want to characterize several relevant properties of structured fluids:

(Pa)

∢

Stress

- I. Flow Curve (Newtonian or Non-Newtonian)
- II. <u>Yield Stress</u>
- III. Thixotropy
- IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stress ramp #2
 - Stress sweep
 - Shear rate ramp
 - Dynamic stress/strain sweep

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. <u>Yield Stress</u>
 - III. Thixotropy
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stress ramp
 - Stress sweep #1
 - Shear rate ramp
 - Dynamic stress/strain sweep

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. <u>Yield Stress</u>
 - III. Thixotropy
 - IV. Viscoelasticity (complex mechanical properties)

- Stress ramp
- Stress sweep #2
- Shear rate ramp
- Dynamic stress/strain sweep
- Incidence of wall slip is often observed when testing structured fluids
- Wall slip shows artifact yield

Overall, we want to characterize several relevant properties of structured fluids:

(Pa.s)

ശ

Viscosity

- Ι. Flow Curve (Newtonian or Non-Newtonian)
- П. **Yield Stress**
- Ш. Thixotropy
- IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stress ramp
 - Stress sweep #2
 - Shear rate ramp
 - Dynamic stress/strain sweep
 - Shear rate ramp down from 500 to 0.001 1/s
 - Yield is identified by the stress plateau
 - Suitable for weak structures

Waters[™]

Stress

⋗

Overall, we want to characterize several relevant properties of structured fluids:

(Pa)

Storage modulus

- I. Flow Curve (Newtonian or Non-Newtonian)
- II. <u>Yield Stress</u>
- III. Thixotropy
- IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stress ramp
 - Stress sweep #2
 - Shear rate ramp
 - Dynamic stress/strain sweep
- Dynamic stress/strain sweep test on Mayonnaise
- Yield stress is signified at the onset of G' vs. stress curve
- Yield determined by this method indicates the critical stress at which irreversible plastic deformation occurs

Waters™

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. <u>Thixotropy</u>
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stepped Flow (3 step)
 - Stepped Dynamic (3 step)
 - Stress ramp up and down (thixotropic loop)
 - Dynamic time sweep after pre-shear

Stepped Flow (3 step)

Experimental:

Step 1: Low Shear (e.g. 0.1 1/s), state of rest

Step 2: High Shear (e.g. 10 1/s), structural destruction

Step 3: Low Shear (e.g. 0.1 1/s), structural regeneration

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. <u>Thixotropy</u>
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stepped Flow (3 step)
 - Stepped Dynamic (3 step)
 - Stress ramp up and down (thixotropic loop)
 - Dynamic time sweep after pre-shear

Waters[™]

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. <u>Thixotropy</u>
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stepped Flow (3 step)
 - Stepped Dynamic (3 step)
 - Stress ramp up and down (thixotropic loop)
 - Dynamic time sweep after pre-shear

Stepped Dynamic (3 step)

Experimental:

Step 1: Oscillate within LVR, state of rest

Step 2: Oscillate outside LVR, structural destruction

Step 3: Oscillate within LVR, structural regeneration

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. <u>Thixotropy</u>
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stepped Flow (3 step)
 - <u>Stepped Dynamic (3 step)</u>
 - Stress ramp up and down (thixotropic loop)
 - Dynamic time sweep after pre-shear

Experimental:

Step 1: Oscillate within LVR, state of rest

Step 2: Oscillate outside LVR, structural destruction

Step 3: Oscillate within LVR, structural regeneration

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. <u>Thixotropy</u>
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stepped Flow (3 step)
 - Stepped Dynamic (3 step)
 - Stress ramp up and down (thixotropic loop)
 - Dynamic time sweep after pre-shear

- Ramp shear stress linearly from zero up until sample flows, then ramp stress back down to zero
- ¹ Thixotropic index is measured by taking the area between the up and down stress curves
- TA Tech Tip:

Waters™∣

Overall, we want to characterize several relevant properties of structured fluids:

∢

Stress

- Ι. Flow Curve (Newtonian or Non-Newtonian)
- П. Yield Stress
- Ш. Thixotropy
- IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stepped Flow (3 step)
 - Stepped Dynamic (3 step)
 - Stress ramp up and down (thixotropic loop)
 - Dynamic time sweep after pre-shear
- Ramp shear stress linearly from zero up until sample flows, then ramp stress back down to zero
- Thixotropic index is measured by taking the area between the up and down stress curves
- TA Tech Tip:

Mayonnaise, Yellow Mustard, and Ketchup

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. <u>Thixotropy</u>
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Stepped Flow (3 step)
 - Stepped Dynamic (3 step)
 - Stress ramp up and down (thixotropic loop)
 - Dynamic time sweep after pre-shear

under shear at rest Shear removed $\sigma < \sigma_{vield}$ $\sigma > \sigma_{vield}$ Partial recovery Full recovery Yield Structure destroyed Viscosity & elasticity Hiah viscosity High viscosity Elasticity Elasticity Shear thinning recover over time

Experimental:

Step 1: Preshear sample for some duration to destroy structure

Step 2: Oscillation time (strain within LVR) to observe recovery

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. <u>Thixotropy</u>
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods

Right tool for the job: 20-60mm parallel plates

- Stepped Flow (3 step)
- Stepped Dynamic (3 step)
- Stress ramp up and down (thixotropic loop)
- Dynamic time sweep after pre-shear

- Monitor the increase of the G' as a function of time.
- Thixotropic recovery is described by meausring the recovery time (τ)

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. Thixotropy
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - o Creep Recovery
 - Normal Stress
 - Oscillation Frequency Sweep
 - Oscillation Temperature Ramp

- Force/Stress is applied for a set duration and strain is measured
- After stress is removed, strain recovery is measured
- The more the strain recovers, the more elastic the sample is

Waters[™]

Overall, we want to characterize several relevant properties of structured fluids:

≻

Strain

- Ι. Flow Curve (Newtonian or Non-Newtonian)
- Yield Stress 11
- Ш. Thixotropy
- IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Creep Recovery
 - Normal Stress 0
 - **Oscillation Frequency Sweep** 0
 - **Oscillation Temperature Ramp** 0
 - Compliance and modulus have an inverse relationship
 - In creep step low compliance implies high modulus (low strain at a given stress)
 - In recovery step low recoverable compliance implies high elasticity (sample fully recovers)

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. Thixotropy
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Creep Recovery
 - o Normal Stress
 - Oscillation Frequency Sweep
 - Oscillation Temperature Ramp

- Normal stress is measured as a function of shear rate
- Elastic fluids store energy of deformation, and push plates apart

Step time

^t ₅ (s)

2.5 cm

I.

П.

Ш.

IV.

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. Thixotropy
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Creep Recovery
 - Normal Stress
 - Oscillation Frequency Sweep
 - Oscillation Temperature Ramp
 - The complex viscosity of the two lotions is very similar
 - However, the viscoelasticity is very different between the two

Complex viscosit

(Pa.s

- Overall, we want to characterize several relevant properties of structured fluids:
 - I. Flow Curve (Newtonian or Non-Newtonian)
 - II. Yield Stress
 - III. Thixotropy
 - IV. Viscoelasticity (complex mechanical properties)
- Common methods
 - Creep Recovery
 - Normal Stress
 - Oscillation Frequency Sweep
 - o Oscillation Temperature Ramp

Rheology Applications

Polymers

Rheology Applications 2. Polymers

- Polymer melts:
 - 25mm and 8mm parallel plates, and disposable plates (cure)
 - Cone-plate (normal force measurement)
 - Cone partitioned plate (avoid edge fracture, LAOS)
- Polymer solids:
 - Torsion rectangular and cylindric geometry
 - DMA clamps (tension, bending, cantilever, compression)

Three main reasons for rheological testing:

Characterization

MW, MWD, formulation, state of flocculation, etc.

Process performance

Extrusion, blow molding, pumping, leveling, etc.

Product performance

Strength, use temperature, dimensional stability, settling stability, etc.

Torsion rectangular and cylindrical clamps

DMA cantilever, 3-point bending and tension clamps

Properties of Polymers

- Overall, we want to characterize several relevant properties of polymers:
 - I. <u>Thermal Stability</u>
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

- Determines if properties are changing over the time of testing
 - Degradation
 - Molecular weight building, crosslinking

Melt Flow Testing Considerations

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

Waters[™] |

Edge Fracture:

Sample leaves gap because of normal forces

Cox-Merz Rule

An empirical relationship between a dynamic complex viscosity and steady shear viscosity. It has been observed working with many polymer melt systems

 $\eta(\dot{\gamma}) \equiv \eta^*(\omega)$

Waters[™] |

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation
 - Sensitive to Molecular Weight, Mw
 - For Low MW (no Entanglements) η_0 is proportional to Mw
 - For MW > Critical Mw_c, η_0 is proportional to Mw^{3.4}

Time and Temperature Relationship (Viscoelasticity)

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

- At low frequencies molecular relaxation is at large time scales- large length scales
- At high frequencies molecular relaxation is at short time scales – small length scales
- Commonality between Frequency and Temperature is the timescale of molecular relaxation (Polymer chains diffusing)

- At low temperatures molecular relaxation is slow – the diffusion is limited to *small length scales* and small time scales
- At high temperatures molecular relaxation is fast – the diffusion is predominately **large length scales** and large time scales

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation
 - The zero shear viscosity increases with increasing molecular weight. TTS is applied to obtain the extended frequency range.

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation
 - A Polymer with a broad MWD exhibits non-Newtonian flow at a lower rate of shear than a polymer with the same η_0 , but has a narrow MWD.

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation
 - The G' and G" curves are shifted to lower frequency with increasing molecular weight.

 Analyzing Molecular
Weight Distribution w/ Rheology

Waters[™] | 🦨

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)

The maximum in G" is a good indicator of the broadness of the distribution

Higher crossover frequency : lower $\rm M_w$

Higher crossover Modulus: narrower MWD

(note also the slope of G" at low frequencies – narrow MWD steeper slope)

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

Using rheological measurements to quantify
molecular weight and molecular weight distribution

João Maia: The Role of Interfacial Elasticity on the Rheological Behavior of Polymer Blends Chris Macosko: Analyzing Molecular Weight Distribution w/ Rheology

Macosko, TA Instruments Users' Meeting, 2015

Waters[™] |

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

Tack and Peel of Pressure Sensitive adhesive

Frequency Sweep

- A dynamic frequency sweep test results can correlate to tack and peel performance
- One single frequency sweep test cannot cover the entire frequency range of interest. Use Time-Temperature Superposition (TTS).

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

Tack and Peel of Pressure Sensitive adhesive

- Temperature Ramp (more
- ¹⁰ common on DMA)

A temperature ramp test is an alternative to frequency sweeps for temperature stable polymers

Molecular weight, Viscoelasticity, and Curing

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

Temperature (T °C)

HARDER CONTRACTOR OF CONTRACTO

Temperature Ramp

Correlates with polymer molecular structure: Mw, MWD, and crosslinking

Segway into "Thermosets, curing and gelation" section

Molecular weight, Viscoelasticity, and Curing

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

 Correlates with polymer molecular structure: Mw, MWD, and crosslinking

Molecular weight, Viscoelasticity, and Curing

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

 Formation of network across span of material volume

Waters[™]

Common Curing Experiments

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

Temperature Ramp Curing

Isothermal Curing Experiments

- Overall, we want to characterize several relevant properties of polymers:
 - Τ. Thermal Stability
 - Ш. Flow Curve
 - Molecular Weight Effects (Viscoelasticity) Ш.
 - IV. Thermosets, Curing, Gelation

Isothermal Curing (Time Sweep)

TA

Liquid to Gel to Solid Transition

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation
 - Viscosity goes to infinity
 - System loses solubility
 - Molecular weight M_w goes to infinity

Empiricism of Y. M. Tung and P. J. Dynes (1982)

When G' = G'' and Tan δ = 1

True Gelation Point (Multifrequency time sweep)

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

G. Kamykowski; T. Chen, The Use of Multi-wave Oscillation to Expedite Testing and Provide Key Rheological Information. ANTEC, 2020

Gelation Kinetics

- I. Thermal Stability
- II. Flow Curve
- III. Molecular Weight Effects (Viscoelasticity)
- IV. Thermosets, Curing, Gelation

The gelation kinetics can be described using the empirical Arrhenius model

Waters™

 Perform isothermal curing at different temperatures

Quantifying Crosslink Density Post Cure (DMA)

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

M. Barszczewska-Rybarak et al; Acta of Bioengineering and Biomechanics, vol 19, 1, 2017. M. H. Abd-El Salam, J of Applied Polymer Sci, vol 90, 1539-1544, 2003.

- For unfilled polymers, crosslinking density can be quantitatively measured using rheology
- Calculation uses storage modulus in rubber plateau region (G'_{rubbery} or E'_{rubbery})

UV Curing (Rheometer only)

- Overall, we want to characterize several relevant properties of polymers:
 - I. Thermal Stability
 - II. Flow Curve
 - III. Molecular Weight Effects (Viscoelasticity)
 - IV. Thermosets, Curing, Gelation

- Monitor UV curing: Dynamic time sweep
- Measure curing time with different formulations, UV intensity and temperature
- Measure cured adhesive modulus

Review

Thank You!