Dynamic Mechanical Analysis
Basic Theory & Applications Training
Day 1
Course outline

Day 1
- Basic Theories of Dynamic Mechanical Analysis
- DMA Instrumentation and Clamps
- Introduction to DMA Experiments
 - Dynamic tests
 - Transient tests

Day 2
- Recap of Day 1
- DMA Applications and Data Interpretation
- Troubleshooting Experimental Issues
- Time-Temperature Superposition (TTS)
Basic Theories of Dynamic Mechanical Analysis
DMA definitions

- A Dynamic Mechanical Analyzer (DMA) measures the mechanical/rheological properties of a material as a function of time, frequency, temperature, stress and strain.

- Typical materials tested on a DMA
 - Thermal plastic and thermosets
 - Elastomers/ rubbers
 - Gels
 - Foams
 - More....
Working principle of a DMA

- Apply a **force** or a **deformation** to a sample, then measure sample’s response, which will be a deformation or a force.
- All mechanical parameters (stress, strain, modulus, stiffness et al) are calculated from these 2 raw signals

\[
\text{Stress (Pa)} = \frac{\text{Force (N)}}{\text{Area (m}^2\text{)}}
\]

\[
\text{Strain} = \frac{\text{Deformation (m)}}{\text{Length (m)}}
\]

\[
\text{Modulus (Pa)} = \frac{\text{Stress (Pa)}}{\text{Strain}}
\]
Hooke’s Law of Elasticity

- For a purely Elastic Solid, Stress and Strain have a constant proportionality
- The slope of stress over strain is the Young’s modulus of the material

\[\sigma = \varepsilon E \]
Newton’s Law of Viscosity

- For a purely Viscous Liquid, Stress is proportional to Strain Rate $d\varepsilon/dt$

- The slope of stress over strain rate is the viscosity of the material

$$\sigma = \eta \cdot d\varepsilon/dt$$
Time dependency of mechanical properties in viscoelastic materials

- In tensile testing of viscoelastic materials, the rate of extension will give different results
 - the stress depends on both the strain, and the strain rate

\[\sigma = E \cdot \varepsilon + \eta \cdot d\varepsilon/dt \]
Time-dependent viscoelastic behavior

- Long deformation time: pitch behaves like a highly viscous liquid
 - 9th drop fell July 2013
- Short deformation time: pitch behaves like a solid

Started in 1927 by Thomas Parnell in Queensland, Australia

Time-dependent viscoelastic behavior

T is short [< 1 sec]

T is long [>2 hours]
Dynamic Mechanical Testing

- An oscillatory (sinusoidal) deformation (stress or strain) is applied to a sample.
- The material response (strain or stress) is measured.
- The phase angle δ, or phase shift, between the deformation and response is also measured.
Phase angle response in dynamic mechanical tests

Purely Elastic Response
(Hookean Solid)
\[\delta = 0° \]

Purely Viscous Response
(Newtonian Liquid)
\[\delta = 90° \]

Viscoelastic Response
(Most materials)
Phase angle \(0° < \delta < 90° \)
Viscoelastic parameters obtained from DMA tests

The Modulus: Measure of materials overall resistance to deformation.

\[E^* = \frac{\text{stress amplitude } (\sigma)}{\text{strain amplitude } (\gamma)} \]

\[E' = \left(\frac{\sigma}{\gamma} \right) \cos \delta \]

\[E'' = \left(\frac{\sigma}{\gamma} \right) \sin \delta \]

Tan Delta: Measure of material damping. Increasing tan \(\delta \) implies a greater potential for energy dissipation and lower elasticity, and vice-versa. Measure of viscous property while having the appropriate level of stiffness.

\[\tan \delta = \left(\frac{E''}{E'} \right) \]
Storage and Loss of a Viscoelastic Material
Viscoelastic spectrum for a typical amorphous polymer

Temperature

Glassy Region

Transition Region

Rubbery Plateau Region

Terminal Region

log E' (G') and E'' (G'')

Storage Modulus (E' or G')

Loss Modulus (E'' or G'')

DMA Applications Range
DMA results can correlate to:

- Stress
- Strain
- Stiffness
- Damping factor
- Transition temperatures
- Modulus (E, G) / Compliance (J)

Processing Conditions
DMA Instrumentation and Clamps
DMA instrumentation

RSA G2

Discovery DMA850

Electroforce series (high load frame, fatigue)
DMA instrumentation

RSA G2
Separate Motor & Transducer

Force Rebalance Transducer (FRT) Measures Force (Stress)

Sample

Actuator Applies deformation (Strain)

DMA850 and Q800
Combined Motor & Transducer

Fixed

Sample

Displacement Sensor Measures deformation (Strain)

Motor Applies Force (Stress)
DMA850: Schematic
DMA850 and Q800: Humidity Option
DMA Specifications

<table>
<thead>
<tr>
<th></th>
<th>RSA G2</th>
<th>DMA850</th>
<th>Q800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Force</td>
<td>35 N</td>
<td>18 N</td>
<td>18 N</td>
</tr>
<tr>
<td>Min Force</td>
<td>0.0005 N</td>
<td>0.0001 N</td>
<td>0.0001 N</td>
</tr>
<tr>
<td>Displacement Resolution</td>
<td>1 nm</td>
<td>0.1 nm</td>
<td>1 nm</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>2×10^{-6} to 100 Hz</td>
<td>1×10^{-4} to 200 Hz</td>
<td>1×10^{-2} to 200 Hz</td>
</tr>
<tr>
<td>Dynamic Deformation Range</td>
<td>$\pm 5 \times 10^{-5}$ to 1.5 mm</td>
<td>$\pm 5 \times 10^{-6}$ to 10 mm</td>
<td>$\pm 5 \times 10^{-4}$ to 10 mm</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-150 to 600°C</td>
<td>-150 to 600°C</td>
<td>-150 to 600°C</td>
</tr>
<tr>
<td>Isothermal Stability</td>
<td>± 0.1</td>
<td>± 0.1</td>
<td>± 0.1</td>
</tr>
<tr>
<td>Heating Rate</td>
<td>0.1°C to 60°C/min</td>
<td>0.1°C to 20°C/min</td>
<td>0.1°C to 20°C/min</td>
</tr>
<tr>
<td>Cooling Rate</td>
<td>0.1°C to 60°C/min</td>
<td>0.1°C to 10°C/min</td>
<td>0.1°C to 10°C/min</td>
</tr>
</tbody>
</table>
DMA Mode on DHR and ARES-G2

ARES G2 and DHR DMA Mode

Strain control & dynamic test only

- Force Rebalance Transducer (FRT) *(Measures Stress)*
- Servo control on Null position *(Strain)*
- Sample

For the ARES-G2, the bottom Actuator remains locked during DMA function.
Specifications of the DHR-DMA and the ARES-G2 DMA

<table>
<thead>
<tr>
<th>Dynamic test only</th>
<th>DHR – DMA mode</th>
<th>ARES-G2 DMA mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Control</td>
<td>FRT</td>
<td>FRT</td>
</tr>
<tr>
<td>Minimum Force (N) Oscillation</td>
<td>0.1</td>
<td>0.001</td>
</tr>
<tr>
<td>Maximum Axial Force (N)</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Minimum Displacement (μm) Oscillation</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Maximum Displacement (μm) Oscillation</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Displacement Resolution (nm)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Axial Frequency Range (Hz)</td>
<td>1×10^{-5} to 16</td>
<td>1×10^{-5} to 16</td>
</tr>
</tbody>
</table>
What samples can be measured on a DMA?

- By changing the clamp, we can test a range of different materials:
 - Elastomers
 - Films
 - Fibers
 - Gels
 - Plastics
 - Foams
 - Composites
Clamps for DMA850 and Q800

- S/D Cantilever
- Film/Fiber Tension
- 3-Point Bending
- Compression
- Shear Sandwich
- Submersible Tension
- Submersible Bending
- Submersible Compression
Clamps for RSA G2

Film/Fiber Tension 3-Point Bending Shear Sandwich

Compression S/D Cantilever Contact Lens
RSA G2 Immersion Clamps

- Immersion clamp kit offers 3 geometries with temperature control from -10 to 200 °C in the FCO.

Tension: Up to 25 mm long, 12.5 mm wide and 1.5 mm thick.

Compression: 15 mm in diameter; maximum sample thickness is 10 mm.

Three Point Bending: includes interchangeable spans for lengths of 10, 15, and 20 mm. Maximum sample width is 12.5 mm and maximum thickness is 5 mm.
Testing Solids on a Rheometer

Torsion (rotational) and DMA (axial) geometries allow solid samples to be characterized in a temperature controlled environment.

\[E = 2G(1 + \nu) \]

\(\nu \): Poisson’s ratio

Shear Modulus: \(G', G'', G^* \)

Young’s Modulus: \(E', E'', E^* \)
Three fundamental modes of deformation

Young’s Modulus

Shear Modulus

Bulk Modulus

\[E = \frac{\sigma}{\varepsilon} \]

\[G = \frac{\tau}{\gamma} \]

\[B = \frac{\sigma_{\text{hyd}}}{\Delta V/V_o} \]

Where

- Dashed lines indicate initial stressed state
- \(\sigma \) = uniaxial tensile or compressive stress
- \(\tau \) = shear stress
- \(\sigma_{\text{hyd}} \) = hydrostatic tensile or compressive stress
- \(\varepsilon \) = normal strain
- \(\gamma \) = shear strain
- \(\Delta V/V_o \) = fractional volume expansion or contraction
Poisson's Ratio

- Poisson's ratio, ν, is the ratio of transverse to axial strain

\[\frac{I_z - I_{0z}}{2} = \frac{e_z}{2} \]

\[\frac{I_y - I_{0y}}{2} = \frac{-e_y}{2} \]

\[\nu = \frac{-e_y}{e_z} \]
Relationship between moduli and Poisson’s ratio for elastic isotropic materials

• Elastic Isotropic materials are materials in which properties at a point are the same in all directions. Some examples of isotropic materials are unoriented amorphous polymers and annealed glasses [1].

• If any of the two elastic constants of a homogenous (in which properties do not vary from point to point) isotropic material, the other two may be calculated [2].

\[E = 2G(1 + \nu) = 3B(1 + 2\nu) \]

Poisson’s Ratio

• If the volume of the specimen remains constant when deformed, $\nu = 0.5$.
 • Examples of constant volume materials are liquids and ideal rubbers.

• In general, there is an increase in volume given by $\frac{\Delta V}{V_0} = (1 - 2\nu)\varepsilon$ where ΔV = increase in initial volume V_0 caused by straining the sample.
Comparison of Moduli and Poisson’s Ratio

<table>
<thead>
<tr>
<th>Material</th>
<th>E (GPa)</th>
<th>ν</th>
<th>G (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>220</td>
<td>0.28</td>
<td>85.9</td>
</tr>
<tr>
<td>Copper</td>
<td>120</td>
<td>0.35</td>
<td>44.4</td>
</tr>
<tr>
<td>Glass</td>
<td>60</td>
<td>0.23</td>
<td>24.4</td>
</tr>
<tr>
<td>Granite</td>
<td>30</td>
<td>0.30</td>
<td>15.5</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>34</td>
<td>0.33</td>
<td>12.8</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>24</td>
<td>0.38</td>
<td>8.7</td>
</tr>
<tr>
<td>Natural Rubber</td>
<td>0.02</td>
<td>0.49</td>
<td>0.0067</td>
</tr>
</tbody>
</table>

Modulus calculations in DMA

<table>
<thead>
<tr>
<th>DMA850 and Q800</th>
<th>RSA G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness ((K)) = Force / Displacement</td>
<td>Stress ((\sigma)) = Force (\times K_\sigma)</td>
</tr>
<tr>
<td>Modulus ((E)) = (K \times GF)</td>
<td>Strain ((\gamma)) = Displacement (\times K_\gamma)</td>
</tr>
<tr>
<td>GF: Geometry factor. Clamp dependent Can be found in online help manual</td>
<td>Modulus ((E)) = (\frac{\sigma}{\gamma})</td>
</tr>
</tbody>
</table>

\[
GF = \frac{K_\sigma}{K_\gamma}
\]
Choose the correct clamp for testing

- **Sample Dimension**
 - Films and fibers: tension clamps
 - Bars and cylinders: bending clamps
 - O-rings and tablets: compression and/or shear

- **Deformation Mode**:
 - E [tension, compression and bending]
 - G [shear]

- **Sample Stiffness**:
 - Machine range fixed: $10^2 - 10^7 \text{ N/m}$. Stiffness of sample related to its dimensions [L, w, t]. Stiffness may limit sample size to below clamp maximum.
Sample which are stiff with a well-defined geometry allowing for sample dimensions can be measured accurately.

- **Precautions:**
 - Soft samples ($T_g < RT$) with well-defined geometry such as elastomers may get pinched during clamping and cause errors in measurement.
 - Samples with high CTE can expand between the clamp faces and buckle, causing significant errors in measurement.

- Mechanical properties, secondary transitions, T_g of polymers (thermoplastics/thermosets)
 - Measurement of modulus and $\tan \delta$

- Typical sample length is 17.5 mm. Smaller sizes available.

- Use a consistent clamping torque (typically 10 in-lbs)
Geometry Factor - Single Cantilever Clamp

Modulus = Stiffness × Geometry Factor

\[
GF_{sc} = \frac{12 \cdot l^3 \left[1 + \frac{12}{5} (1+v) \left(\frac{t}{l} \right)^2 \right]}{12 w t^3}
\]

If length/thickness > 10, the contribution of the term containing the Poisson’s Ratio can be approximated to be negligible.

\[
GF_{sc} = \frac{l^3}{w t^3}
\]

w = sample width
l = sample length
t = sample thickness
DMA: Dual Cantilever Clamp

- Samples which are stiff with a well-defined geometry allowing for sample dimensions can be measured accurately.
 - Precautions:
 - Soft samples (with Tg < RT) such as elastomers may get pinched during clamping and cause errors in measurement.
 - Samples with high CTE can expand between the clamp faces and buckle, causing significant errors in measurement.
- Tracking cure of thermosets/composites, mechanical properties, secondary transitions and T_g of polymers (thermoplastics/thermosets)
 - Measurement of modulus and tan δ
- Typical sample length is 35 mm. Smaller sizes available. Good for materials that require a larger sample size for homogeneity
- Use a consistent clamping torque (typically 10 in-lbs)
Geometry Factor - Dual Cantilever Clamp

Modulus = Stiffness \times Geometry Factor (GF)

GF_{DC} = \frac{12 \cdot l^3 \left[1 + \frac{12}{5} (1 + \nu) \left(\frac{t}{l} \right)^2 \right]}{24 w t^3}

If length/thickness > 10, the contribution of the term containing the Poisson’s Ratio can be approximated to be negligible

GF_{DC} = \frac{l^3}{2 w t^3}

w = sample width
l = sample length
t = sample thickness
DMA: 3 Point Bend Clamp

- Conforms with ASTM standard test method for bending
- Purest deformation mode since clamping effects are eliminated
- Samples which are stiff with a well-defined geometry allowing for sample dimensions can be measured accurately.
 - Precautions:
 - Samples that get soft around T_g (typically unfilled thermoplastics) can sag and introduce errors in modulus measurements.
- Tracking cure of thermosets/composites, mechanical properties and T_g of polymers that are stiff past the glass transition (filled thermoplastics/thermosets/elastomers)
 - Measurement of modulus and $\tan \delta$
- Typical sample lengths 50 mm and 20 mm. Smaller sizes available.
- Sample alignment along the stationary fulcrum is important.
Geometry Factor - 3 Point Bending Clamp

Modulus = Stiffness × Geometry Factor

\[GF_{3PB} = \frac{3l^3}{12wt^3} \left[1 + \frac{6}{10}(1+\nu)\left(\frac{2t}{l}\right)^2 \right] \]

If length/ thickness > 10, the contribution of the term containing the Poisson’s Ratio can be approximated to be negligible.

\[GF_{3PB} = \frac{l^3}{4wt^3} \]

w = sample width
l = sample length
t = sample thickness
Films and fibers need to have a well-defined geometry allowing for sample dimensions can be measured accurately. Sample length is calculated automatically by the instrument.

Applications
- Mechanical properties, Tg, secondary transitions (modulus and tan δ)
- Creep and stress relaxation
- Temperature controlled constant force or displacement tests to understand processing effects and shrinkage
- Generation of stress-strain curves

Sample alignment between the clamps is important.

Use a consistent clamping torque (typically 3-5 in-lbs)
Geometry Factor – Film/fiber/tension clamp

Modulus = Stiffness × Geometry Factor

\[GF_{Film} = \frac{l}{wt} \]

w = sample width
l = sample length
t = sample thickness
DMA: Compression Clamp

- Good mode for low to medium modulus materials (gels, elastomers) which are compressible throughout the test temperature range
 - Precautions:
 - Samples that are incompressible (typically below the Tg) are difficult to test under compression
 - Samples that are too soft and cannot support the load of the clamp need alterations in sample dimensions to get meaningful measurements
- Option for penetration measurements (no modulus information in penetration, only transitions and tan δ)
- Applications:
 - Mechanical properties, Tg, secondary transitions (modulus and tan δ)
 - Creep and stress relaxation
 - Temperature controlled constant force or displacement tests to understand processing effects
- Alignment of plates attached to the moveable and stationary clamps is important.
- Sample diameter <= plate diameter (15 mm and 40 mm options). Use exact sample diameter
Geometry Factor – Film/fiber/tension clamp

Modulus = Stiffness \times Geometry Factor

$$GF_{Comp} = \frac{\text{thickness}}{\text{sample surface area}} = \frac{t}{\pi r^2}$$

$r = \text{sample radius}$
$t = \text{sample thickness, between clamp faces}$
DMA: Shear Sandwich Clamp

- Good for evaluating highly damped soft solids such as gels and adhesives & elastomers > T_g
 - Precautions:
 - Samples should be able to support their own weight under gravity (no flow through the test temperature)
 - Clamping between the plates need to be consistent
 - Applications:
 - Mechanical properties, T_g, secondary transitions (modulus and tan δ)
- Sample size <= plate size
Operating Range of the Shear Sandwich Clamp

Modulus = Stiffness \times Geometry Factor

$$GF_{\text{Shear}} = \frac{3t}{5wh}$$

- w = sample width, i.e. horizontal dimension
- h = sample height, i.e. vertical dimension
- t = sample thickness, between clamp faces
Changing Sample Stiffness

<table>
<thead>
<tr>
<th>Clamp Type</th>
<th>To Increase Stiffness...</th>
<th>To Decrease Stiffness...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension Film</td>
<td>Decrease length or increase width. If possible increase thickness.</td>
<td>Increase length or decrease width. If possible decrease thickness.</td>
</tr>
<tr>
<td>Tension Fiber</td>
<td>Decrease length or increase diameter if possible.</td>
<td>Increase length or decrease diameter if possible.</td>
</tr>
<tr>
<td>Dual/Single Cantilever</td>
<td>Decrease length or increase width. If possible increase thickness. Note: L/T ≥ 10</td>
<td>Increase length or decrease width,, If possible decrease thickness. Note: L/T ≥ 10</td>
</tr>
<tr>
<td>Three Point Bending</td>
<td>Decrease length or increase width. If possible increase thickness.</td>
<td>Increase length or decrease width. If possible decrease thickness.</td>
</tr>
<tr>
<td>Compression – circular sample</td>
<td>Decrease thickness or Increase diameter.</td>
<td>Increase thickness or decrease diameter.</td>
</tr>
<tr>
<td>Shear Sandwich</td>
<td>Decrease thickness or Increase length and width.</td>
<td>Increase thickness or decrease length and width.</td>
</tr>
</tbody>
</table>
DMA Clamping Guide

<table>
<thead>
<tr>
<th>Sample</th>
<th>Clamp</th>
<th>Sample Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>High modulus materials and composites</td>
<td>3-point Bend Dual Cantilever Single Cantilever</td>
<td>L/T > 10 if possible</td>
</tr>
<tr>
<td>Unreinforced thermoplastics or thermosets</td>
<td>Single Cantilever Dual cantilever</td>
<td>L/T >10 if possible</td>
</tr>
<tr>
<td>Brittle solid (ceramics)</td>
<td>3-point Bend</td>
<td>L/T>10 if possible</td>
</tr>
<tr>
<td>Elastomers</td>
<td>3-point bend Tension</td>
<td>L/T>10 if possible T<1 mm</td>
</tr>
<tr>
<td>Films/Fibers</td>
<td>Tension</td>
<td>L 10-20 mm T<2 mm</td>
</tr>
<tr>
<td>Supported Systems</td>
<td>8 mm Dual Cantilever</td>
<td>minimize sample, put foil on clamps</td>
</tr>
</tbody>
</table>

- **L/T**: Length to Thickness ratio
- **T**: Thickness of the sample
DMA850 Flow Chart of Calibration Procedures

- Follow the online help manual
- The stability verification is performed at installation
- Instrument calibration includes 2 steps: force and phase
- **Clamp calibration: perform when newly attached.**
- **Position calibration from touchscreen**

See also: https://www.youtube.com/user/TATechTips
Instrument calibration includes 3 steps: Electronics, Force, and Dynamic

Position calibration: calibrate the absolute position of the drive shaft. Perform this calibration when DMA is moved, reset, or powered down.

Clamp calibration: perform when newly attached.

See also: https://www.youtube.com/user/TATechTips
RSA G2 Flow Chart of Calibration Procedures

- Follow the online help manual
- Instrument calibration: force and phase angle check
- Clamp calibration: mass (perform when newly attached)

See also: https://www.youtube.com/user/TATechTips
Available DMA Experiments
(1) Dynamic Tests
Dynamic (Oscillatory) Testing

Available oscillatory test modes

• Strain (stress) Sweep
• Time Sweep
• Frequency Sweep
• Temperature Ramp
• Temperature Step (Sweep) (TTS)
• Others
Some Clamps Require Offset (static) Force!

Clamps **without** static force:
- Single Cantilever
- Dual Cantilever
- Shear Sandwich

Clamps **with** static force:
- Tension Film
- Tension: Fiber
- 3-Point Bend
- Compression
- Penetration

A = Oscillation (dynamic) force
SF = static force

Force/Time Curves
Preload force in tension

- Preload force continues to act.
- Length is measured and updated automatically.
Net forces acting during oscillation (tension) static force > osc. force

Pre-stretched sample

Half-cycle down

Fixed clamp

Half-cycle up

Sample remains taut
Net forces acting during oscillation (tension)
static force < osc. force

Sample becomes slack on half-cycle up due to net upwards force
Preload force in compression, 3-point bending

COMPRESSION

- Preload force continues to act.
- Thickness is measured and sample information is updated automatically.

3-POINT BENDING

- Sample dimensions are entered manually prior to start of experiment (no automatic update of thickness)
- Preload force continues to act.
Net forces acting during oscillation (compression and 3PB) static force > osc. force

$F_{\text{static}} > F_{\text{osc.}}$

Moveable clamp maintains contact with sample at all times due to net downward force
Net forces acting during oscillation (compression)
static force < osc. force

Half-cycle down

Half-cycle up

Moveable clamp loses contact with sample on half-cycle up due to net upwards force
Force track

- Recap: Desired situation for all clamps is that $F_{\text{static}} > F_{\text{osc}}$

- Force track = $\frac{F_{\text{static}}}{F_{\text{osc}}}$

- If $\frac{F_{\text{static}}}{F_{\text{osc}}} > 1$, then $F_{\text{static}} > F_{\text{osc}}$

- Force track ratio is expressed as a percentage

 - On 850 and 800, Force track = $\frac{F_{\text{static}}}{F_{\text{osc}}} \times 100\%$

 - On RSA-G2, Force track = $(\frac{F_{\text{static}}}{F_{\text{osc}}} - 1) \times 100\%$
Benefits of using force track

- Force track ensures that static force exceeds oscillation force throughout the experiment.
- Values from 125-150% (850/Q800) or 25-50% (RSA-G2) is a good starting point for most samples.
- Decreases static force in proportion to sample modulus in "Tension clamps" to reduce stretching as specimen weakens on increasing temperature.
- Constant (or static) force can be used as long as static force > oscillation force through out the entire experiment.
 - Stiff samples in 3-point bending (thermosets)
Temperature Ramp with Force Track

- Q800 uses the term “Dynamic Force” to denote oscillation force (F_{osc})
- Static Force tracks Dynamic Force throughout Temperature Ramp to prevent over-stretching
Offset Force on DMA850

- **Constant static force**

 - Clamp: Film Clamp
 - Oscillation
 - Temperature Ramp

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>20.0 μm</td>
</tr>
<tr>
<td>Frequency</td>
<td>1.0 Hz</td>
</tr>
<tr>
<td>Initial/preload force</td>
<td>2.0 N</td>
</tr>
<tr>
<td>Use Force Track</td>
<td>125.0 %</td>
</tr>
</tbody>
</table>

- **Force track**

 - Clamp: Film Clamp
 - Oscillation
 - Temperature Ramp

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>20.0 μm</td>
</tr>
<tr>
<td>Frequency</td>
<td>1.0 Hz</td>
</tr>
<tr>
<td>Initial/preload force</td>
<td>0.1 N</td>
</tr>
<tr>
<td>Use Force Track</td>
<td>125.0 %</td>
</tr>
</tbody>
</table>

 - Use current temperature
 - Ramp from 35 °C to 150 °C
 - Ramp rate 3.0 °C/min
 - Soak times
 - at Start temperature 00:05:00 hh:mm:ss
 - at End temperature 00:00:00 hh:mm:ss
 - Estimated time to complete 00:38:20 hh:mm:ss

 Test Settings Post Test Conditions
Offset Force on Q800

- **Constant static force**

- **Force track**
Offset Force on RSA G2

- **Constant static force**

- **Force track**
Choosing Force Track Parameters

<table>
<thead>
<tr>
<th>Clamp Type</th>
<th>Static Force</th>
<th>Force Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension Film</td>
<td>0.01 N</td>
<td>120 to 150%</td>
</tr>
<tr>
<td>Tension Fiber</td>
<td>0.001 N</td>
<td>120%</td>
</tr>
<tr>
<td>Compression</td>
<td>0.001 to 0.01 N</td>
<td>125%</td>
</tr>
<tr>
<td>Three Point Bending Thermoplastic Sample</td>
<td>1 N</td>
<td>125 to 150%</td>
</tr>
<tr>
<td>Three Point Bending Stiff Thermoset Sample</td>
<td>1 N</td>
<td>150 to 200%</td>
</tr>
</tbody>
</table>

Note: Constant (or static) force can be used as long as static force > dynamic force throughout the entire experiment.
Dynamic Strain (Stress) Sweep

The material response to increasing deformation amplitude is monitored at a constant frequency and temperature.

USES
- Identify Linear Viscoelastic Region
- Resilience/elasticity
Dynamic Strain Sweep: Material Response

- **\(\gamma_c \)** = Critical Strain
- Linear viscoelastic region: Results independent of strain
- Constant Slope
- Oscillation strain \(\varepsilon \) (%)
- Storage modulus \(E' \) (Pa)
- Oscillation stress \(\sigma' \) (Pa)
Programming Strain Sweep on DMA850

Sample:

Clamp: Film Clamp

Oscillation

Strain Sweep

Temperature: 25°C
Soak time: 60.0 s
Frequency: 1.0 Hz
Initial/preload force: 0.1 N
Use Force Track: 125.0%

Sweep Mode
- Logarithmic
- Linear
- Discrete

Strain: 0.01% to 10.0%
Points per decade: 5
Number of Sweeps: 1

Test Settings
Post Test Conditions
Programming Strain Sweep on Q800

Mode: DMA Multi-Strain

Material is held isothermally and deformed over a range of strain amplitudes at a single frequency.

Strain Sweep

- Frequency: 1.00 Hz
- Preload force: 0.0100 N
- Force track: 125%

Isothermal temperature: 35.00 °C
Soak time: 5.00 min
Number of sweeps: 1

Amplitude Table

- Amplitude: 0.100 μm to 100.000 μm
- Number of points: 19
Programming Strain Sweep on RSA G2

[Experiment 2]

- Sample: PET film LN2 only
- Geometry: Tension fixture (rectangle)

Procedure of 2 steps

1. Conditioning Options Active, Enabled
2. Oscillation Amplitude

Environmental Control
- Temperature: 25 °C
- Soak time: 60.0 s

Test Parameters
- Frequency: 1.0 Hz
- Logarithmic sweep
 - Strain %: 0.01 to 10.0%
 - Points per decade: 5

Data acquisition
- Advanced
Dynamic Time Sweep

The material response is monitored at a constant frequency, amplitude and temperature.

USES
- Curing studies
- Fatigue tests
- Stability against thermal degradation
Epoxy Curing on Glass Braid

Instrument: DMA850
Clamp: Dual cantilever
Sample: Epoxy coated on glass braid
Dynamic time sweep
Temperature: 35°C
Frequency: 1 Hz
Amplitude: 10 µm
Programming Time Sweep/fatigue on DMA850

• Time sweep example

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>25 °C</td>
</tr>
<tr>
<td>Soak time</td>
<td>60.0 s</td>
</tr>
<tr>
<td>Strain</td>
<td>0.5 %</td>
</tr>
<tr>
<td>Frequency</td>
<td>1.0 Hz</td>
</tr>
<tr>
<td>Duration</td>
<td>300.0 s</td>
</tr>
<tr>
<td>Initial/preload force</td>
<td>0.1 N</td>
</tr>
<tr>
<td>Use Force Track</td>
<td>✔️</td>
</tr>
<tr>
<td>%</td>
<td>125.0</td>
</tr>
</tbody>
</table>

Data sampling mode:
- seconds/pt
- Total points
 - Sampling interval: 10.0 s/pt

Test Settings | Post Test Conditions

• Fatigue example

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>25 °C</td>
</tr>
<tr>
<td>Soak time</td>
<td>00:05:00</td>
</tr>
<tr>
<td>Amplitude</td>
<td>20.0 µm</td>
</tr>
<tr>
<td>Frequency</td>
<td>1.0 Hz</td>
</tr>
<tr>
<td>Initial/preload force</td>
<td>0.01 N</td>
</tr>
<tr>
<td>Use Force Track</td>
<td>✔️</td>
</tr>
<tr>
<td>%</td>
<td>125.0</td>
</tr>
<tr>
<td>Total cycles</td>
<td>10000.0</td>
</tr>
</tbody>
</table>

Data sampling mode:
- seconds/pt
- cycles/pt
- Total points
 - Sampling interval: 10.0 s/pt

Test Settings | Post Test Conditions
Programming Time Sweep on Q800

Mode: DMA Multi-Frequency-Strain
Programming Time Sweep on RSA G2

- Time sweep example

 - Sample: PET film LN2 only
 - Geometry: Tension fixture (rectangle)

- Fatigue example

 Procedure of 2 steps
 1: Conditioning Options Active, Enabled
 2: Oscillation Cycle Sweep

 Environmental Control
 - Temperature: 50 °C
 - Soak time: 300.0 s

 Test Parameters
 - Total cycles: 10000.0
 - Total time: 02:46:40
 - Measure every: 2.0
 - Strain %: 2.0
 - Frequency: 1.0 Hz

- Data acquisition
 - Advanced
Frequency Sweep

- The material response to increasing frequency (rate of deformation) is monitored at a constant amplitude and temperature.

USES
- Quick comparison on modulus and elasticity on solids
- Study polymer melt processing (shear sandwich).
- Estimate long term properties with extended frequency (time) range using TTS
What are Happy and Sad Balls?

- Set of 2 black rubber balls used as demonstration of viscoelastic behavior.
 - When dropped, the Happy Ball bounces and the Sad Ball does not.

https://www.youtube.com/watch?v=lubaukB6B34
Dynamic Mechanical Properties: Tan Delta

- Happy Ball
- Sad Ball

Graph showing the relationship between Frequency f (Hz) and $\tan(\delta)$, with logarithmic scales on both axes.
Dynamic Mechanical Properties: Tan Delta

- $\tan \delta$: Measure of material damping. Balancing viscous property while having the appropriate level of stiffness.

- Increasing $\tan \delta$ implies a greater potential for energy dissipation and lower elasticity, and vice-versa.

$$\tan \delta = \left(\frac{E''}{E'} \right)$$

- Sad ball has a much higher $\tan \delta$ compared to the happy ball.
Frequency Sweep: Material Response

- Terminal Region
- Rubbery Plateau Region
- Transition Region
- Glassy Region

Log Frequency (rad/s or Hz)

Log E' (G') and E'' (G'')

Storage Modulus (E' or G')
Loss Modulus (E'' or G'')
Programming Frequency Sweep on DMA850

- Sample:
- Clamp: Film Clamp

Oscillation → Frequency Sweep

- Temperature: 25 °C
- Soak time: 60.0 s
- Strain: 0.5 %
- Initial/preload force: 0.1 N
- Use Force Track: 125.0 %

Sweep Mode:
- Logarithmic
- Linear
- Discrete

- Frequency: 0.1 Hz to 50.0 Hz
- Points per decade: 5
- Number of Sweeps: 1

Test Settings → Post Test Conditions
Programming Frequency Sweep on Q800

Mode: DMA Multi-Frequency-Strain

- **Procedure Information**
 - **Isothermal Temp / Freq Sweep**
 - Material is held isothermally at a user-specified temperature. Then it is deformed (oscillated) at a constant amplitude (strain) over one or more frequencies and the mechanical properties measured.

- **Frequency Sweep Parameters**
 - **Amplitude**: 25.0000 μm
 - **Strain**: 0.0000 %
 - **Preload force**: 0.0100 N
 - **Force track**: 125 %

- **Isothermal temperature**: 35.00 °C
- **Soak time**: 5.00 min
- **Number of sweeps**: 1

- **Frequency Table**
 - **Frequency**:
 - Single
 - Log
 - **Range**: 0.10 Hz to 10.00 Hz
 - **Points per decade**: 5

- **Notes**
 - Material is held isothermally at a user-specified temperature. Then it is deformed (oscillated) at a constant amplitude (strain) over one or more frequencies and the mechanical properties measured.
Programming Frequency Sweep on RSA G2

- **Sample**: PET film LN2 only
- **Geometry**: Tension fixture (rectangle)

Procedure of 2 steps

1. Conditioning Options Active, Enabled
2. Oscillation Frequency

Environmental Control
- **Temperature**: 25 °C
- **Soak time**: 60.0 s

Test Parameters
- **Strain %**: 0.5 %
- **Logarithmic sweep**
 - **Frequency**: 0.1 to 50.0 Hz
 - **Points per decade**: 5

Data acquisition

Advanced
Dynamic Temperature Ramp

- A linear heating rate is applied. The material response is monitored at a constant frequency and constant amplitude of deformation. Data is taken at user defined time intervals.

Recommend ramp rate for polymer testing: 1-5°C/min.
Temperature Step & Hold- Single /Multi-Frequency

- A step and hold temperature profile is applied. The material response is monitored at one, or over a range of frequencies, at constant amplitude of deformation.
Temperature Profile on Amorphous Polymers

Glassy Region
Transition Region
Rubbery Plateau Region
Terminal Region

log $E'(G')$ and $E''(G'')$

Storage Modulus (E' or G')
Loss Modulus (E'' or G'')

DMA Applications Range
DMA temperature ramp: Happy and sad balls
Programming Temp Ramp/Sweep on DMA850

- Temp Ramp Example

- Temp Sweep Example

Note: Measurement can be done with single or multiple frequencies
Programming Temp Ramp/Step on Q800

Mode: DMA Multi-Frequency-Strain

- Temp Ramp Example
- Temp Sweep Example

Note: Measurement can be done with single or multiple frequencies.
Programming Temp Ramp/Sweep on RSA G2

- Temp Ramp Example
 - Sample: PET film LN2 only
 - Geometry: Tension fixture (rectangle)
 - Procedure of 2 steps:
 1: Conditioning Options Active, Enabled
 2: Oscillation Temperature Ramp

 Environmental Control
 - Start temperature: \(-100\) °C
 - Soak time: 300.0 s
 - Ramp rate: 3.0 °C/min
 - End temperature: 200 °C
 - Soak time after ramp: 0 s
 - Estimated time to complete: 01:40:00

 Test Parameters
 - Sampling interval: 10.0 s/pt
 - Strain %: 0.06%
 - Frequency: 1.0 Hz

 Data acquisition
 - Advanced

- Temp Sweep Example
 - Procedure of 2 steps:
 1: Conditioning Options Active, Enabled
 2: Oscillation Temperature Sweep

 Environmental Control
 - Start temperature: \(-100\) °C
 - Soak time: 300.0 s
 - End temperature: 200 °C
 - Temperature slew: 10 °C
 - Step soak time: 300.0 s

 Test Parameters
 - Strain %: 0.02%

 Logarithmic sweep
 - Frequency: 0.1 Hz to 10.0 Hz
 - Points per decade: 5

 Data acquisition
 - Advanced

Note: Measurement can be done with single or multiple frequencies
Experimental Considerations

- Sample
 - Deformation Mode
 - Stiffness (sample size and shape)
 - Clamp Type (sample size and shape)

- Static Force/Force Track

- Amplitude (single/multiple)

- Frequency (Single/multiple)

- Heating Rate/Temperature Program
Selecting Appropriate Amplitude and Force

- Strain consideration
 - Must be within the linear region

- Force consideration
 - Maximum - 18 N on Q800, DMA850
 - Maximum - 35 N on RSA G2

- Yielding /Creep
 - If the force is too high the specimen may deform irreversibly
 - Must consider behavior at all temperatures and frequencies

- Noise
 - Higher amplitude = lower noise (generally)
 - Trade off against yielding/creep behavior
Frequencies

• Single Frequency
 ▪ In a temperature ramp the most commonly used frequency is between 1 to 10 Hz (6.28 or 63 rad/sec)
• Multiple Frequencies
 ▪ For an ambient test the commonly used frequency range is from 0.1 – 10Hz.
 ▪ Frequency sweeps at multiple temperatures for Time-Temperature Superpositioning (TTS)
 ▪ Run from high to low frequencies for faster initial data acquisition (for DMA850 and Q800 users)
• Data Collection Rate
 ▪ Lower frequencies take longer time - control experiment
 ▪ More frequencies = longer experiment
Temperature Program

- Temp ramp
 - Commonly used heating rate: 1-5°C/min
 - Larger samples have more thermal lag
 - Use slower ramp rates for lower frequencies and frequency sweeps because these take more time

- Temp sweep
 - No thermal lag but time consuming
 - Commonly used for TTS testing, typical temp step: 5-10°C

- Multiple temp steps
 - Commonly used to mimic certain application temperature profile
Available DMA Experiments

(2) Transient Tests
Transient Testing

Available transient test modes

- Creep-Recovery
- Stress Relaxation
- Iso-strain Temperature Ramp
- Iso-force Temperature Ramp
- Stress-Strain Rate Tests
Creep Recovery Experiment

- A stress is applied to sample instantaneously at t_1 and held constant for a specific period of time. The strain is monitored as a function of time ($\gamma(t)$ or $\epsilon(t)$).

- The stress is reduced to zero at t_2 and the strain is monitored as a function of time ($\gamma(t)$ or $\epsilon(t)$).
Creep Recovery Experiment

Response of Classical Extremes

Elastic
- Stain for t > t1 is constant
- Strain for t > t2 is 0

Viscous
- Stain rate for t > t1 is constant
- Strain for t > t1 increase with time
- Strain rate for t > t2 is 0
Creep Recovery Experiment

Creep $\sigma > 0$

Recovery $\sigma = 0$ (after steady state)

Viscous

Visco-elastic

Elastic

Creep Zone

Recovery Zone

σ/η

t$_1$

t$_2$

time
Creep Recovery: Creep and Recoverable Compliance

Creep Compliance

\[J(t) = \frac{\gamma(t)}{\sigma} \]

Creep experiments report the material property *Compliance* which is in a sense the inverse of Modulus.

Recoverable Compliance

\[J_r(t) = \frac{\gamma_u - \gamma(t)}{\sigma} \]

Where \(\gamma_u \) = Strain at unloading
\(\gamma(t) \) = time dependent recoverable strain

Creep-Recovery Test on PET Film

Stress: 5MPa

Instrument: Q800
Clamp: Tension
Temperature: 75°C
Stress: 5MPa

p/n: 984309.901
Creep: Material Response

- Glassy Region
- Transition Region
- Rubbery Plateau Region
- Terminal Region

Graph: Logarithmic plot of creep compliance (J_c) against log time.
Programming Creep Recovery on a DMA850

[Image of software interface showing settings for experiment 1, including:
- Sample
- Clamp: Film Clamp
- Stress Control
- Creep Recovery

Settings include:
- Temperature: 30 °C
- Soak time: 60.0 s
- Preload force: 0.01 N
- Stress: 500.0 Pa
- Creep time: 120.0 s
- Recovery time: 240.0 s

Data sampling mode options: Linear, Log
Sampling rate: 1.0 pts/s]
Programming Creep Recovery on a Q800

Creep
- **Preload force:** 0.0010 N
- **Stress:** 1.0000 MPa
- **Isothermal temperature:** 35.00 °C
- **Soak time:** 5.00 min
- **Creep time:** 10.00 min
- **Recovery time:** 20.00 min

Running Segment Description
1. Data storage Off
2. Equilibrate at 35.00 °C
3. Isothermal for 5.00 min
4. Data storage On
5. Displace 10.00 min, recover 20.00 min
Programming Creep Recovery on a RSA-G2

- A pre-test is required to obtain sample information for the feedback loop
- Stress Control Pre-test: frequency sweep within LVR

1: Conditioning Stress Control

- Load Precomputed Environmental Control
 - Temperature: 30°C
 - Soak time: 60.0 s
- Run and Calculate
 - Strain %: 0.05%

- Save stress control PID file
 - Stress control PID file path: W:\2011\creep.creep

2: Step (Transient) Creep 25°C, 60s, 100Pa
Programming Creep Recovery on a RSA-G2

- **Stress:** needs to be in the linear region
- **Creep time:** until it reaches steady state
- **Recovery time:** until the compliance and strain reach plateau
Stress Relaxation Experiment

- Strain is applied to sample instantaneously (in principle) and held constant with time.
- Stress is monitored as a function of time $\sigma(t)$.
Stress Relaxation Experiment

Response of Classical Extremes

Elastic
- Hookean Solid
 - Stress for $t>0$ is constant

Viscous
- Newtonian Fluid
 - Stress for $t>0$ is 0
Stress Relaxation Experiment

Response of ViscoElastic Material

Stress decreases with time starting at some high value and decreasing to zero.

- For small deformations (strains within the linear region) the ratio of stress to strain is a function of time only.
- This function is a material property known as the **STRESS RELAXATION MODULUS**, $E(t)$

$$E(t) = \frac{\sigma(t)}{\gamma}$$
Stress Relaxation: Compression

![Graph showing modulus $E(t)$ vs. step time t_s (s) with lines for Happy Ball and Sad Ball.](image)

- Happy Ball
- Sad Ball
Stress Relaxation: Material Response

- Glassy Region
- Transition Region
- Rubbery Plateau Region
- Terminal Region

log Stress Relaxation Modulus $E(t)$ or $G(t)$

log time
Programming Stress Relaxation on a DMA850

Temperature: 50 °C
Soak time: 120.0 s
Preload force: 0.01 N
Strain: 1.0 %
Relaxation time: 600.0 s
Recovery time: 0.0 s

Data sampling mode: Linear
Sampling rate: 1.0 pts/s
Programming Stress Relaxation on a Q800

- Stress Relaxation
 - Preload force: 0.0010 N
 - Strain: 0.1000 %
 - Isothermal temperature: 35.00 °C
 - Soak time: 5.00 min
 - Relaxation time: 10.00 min
 - Recovery time: 0.00 min
 - Running Segment Description:
 1. Data storage Off
 2. Equilibrate at 35.00 °C
 3. Isothermal for 5.00 min
 4. Data storage On
 5. Displace 10.00 min, recover 0.00 min
Programming Stress Relaxation on a RSA-G2

2: Step (Transient) Stress Relaxation

Environmental Control
Temperature: 50 °C
Soak time: 120.0 s
- Inherit set point
- Wait for temperature

Test Parameters
Duration: 300.0 s
- Tension
- Compression
Strain %: 1.0%

Sampling
- Linear
- Log
Number of points: 300

Data acquisition
Advanced
Iso-strain/Iso-stress Temperature Ramp

- The strain or stress is held at a constant value and a linear heating rate is applied.

- Valuable for assessing mechanical behavior under conditions of confined or fixed load (stress) or deformation (strain).

- Example: Measure sample shrinkage (length shrinkage or shrinking force)
Iso-Strain Temp Ramp: Measure Shrinking Force

Sample is held at a constant length; shrinkage force is measured

Strain = 0.05%
Iso-Force Temp Ramp: Measure Length Shrinkage

Sample is held at a constant force; shrinkage is measured

Hold force at 0.05N
Temperature: ambient to 120°C
Ramp rate: 3°C/min
Iso-Strain/Iso-Stress on a DMA850

- **DMA Iso-strain**
 - Hold strain constant and measure sample shrinking force

- **DMA Iso-stress**
 - Hold stress constant and measure sample dimension change
Iso-Strain/Iso-Stress on a Q800

- DMA Iso-strain
- Hold strain constant and measure sample shrinking force
- Only works with film-tension clamp on the Q800

- DMA Control force
- Hold force constant and measure sample dimension change
Iso-Strain/Iso-Stress on a RSA G2

- DMA Iso-strain
 - Hold strain constant and measure sample shrinking force

- DMA Iso-force
 - Hold stress constant and measure sample dimension change

DMA Iso-strain

Environmental Control
- Start temperature: 20°C
- Soak time: 180.0 s
- Ramp rate: 3.0 °C/min
- End temperature: 200°C
- Soak time after ramp: 0 s
- Estimated time to complete: 01:00:00 h:mm:ss

Test Parameters
- Sampling rate: 1.0 pts/s
- Tension: 0.1 %
- Maximum force: 20.0 N

DMA Iso-force

Environmental Control
- Start temperature: 20°C
- Soak time: 180.0 s
- Ramp rate: 3.0 °C/min
- End temperature: 200°C
- Soak time after ramp: 0 s
- Estimated time to complete: 01:00:00 h:mm:ss

Test Parameters
- Sampling rate: 1.0 pts/s
- Motor direction: Tension
- Constant axial force: 0.01 N

Data acquisition
Stress-Strain Testing

- Sample is deformed under a constant linear strain rate, Hencky strain rate, force, or stress for generating more traditional stress-strain curves.
- Measure sample’s Young’s modulus, yield stress, strain hardening effect and sample fracture
Polysaccharide Film Stress-Strain Test

Yield Point:
Stress: 2.58e7 Pa
Strain: 2.1 %

Strain hardening

Fracture Point:
Stress: 3.80e7 Pa
Strain: 35.8 %

Young's Modulus: 2.08e7 Pa
R^2: 0.999662

Geometry: Tension
Temperature: 37°C
Rate: 10 μm/s
Strain/Stress Ramp on a DMA850

Strain Ramp

- Sample: [Image]
- Clamp: Film Clamp
- Rate Control
- Strain Ramp

- Temperature: 25 °C
- Soak time: 300.0 s
- Preload force: 0.01 N
- Inherit starting displacement
- Ramp from: Inherited μm to 100.0 μm
- Ramp rate: 20.0 μm/min
- Data sampling mode: Linear
- Sampling rate: 1.0 pts/s

Stress Ramp

- Sample: [Image]
- Clamp: Film Clamp
- Rate Control
- Stress Ramp

- Temperature: 25 °C
- Soak time: 300.0 s
- Preload force: 0.01 N
- Inherit starting force
- Ramp from: Inherited N to 5.0 N
- Ramp rate: 1.0 N/min
- Data sampling mode: Linear
- Sampling rate: 1.0 pts/s

Test Settings | Post Test Conditions
Strain/Stress Ramp on a Q800

- DMA strain rate mode
- Strain ramp
- Displacement ramp

- DMA control force mode
- Force ramp
Strain Ramp on a RSA G2

- **Linear strain rate**
 - Sample: PET film LN2 only
 - Geometry: Tension fixture (rectangle)
 - Procedure of 1 step: Other Axial
 - Environmental Control
 - Temperature: 30 °C
 - Soak time: 60.0 s
 - Test Parameters
 - Duration: 120.0 s
 - Motor direction: Tension
 - Constant linear rate: 1.0 mm/s
 - Maximum gap change: 15.0 mm
 - Sampling
 - Sampling rate: 1.0 pts/s

- **Hencky strain rate**
 - Sample: PET film LN2 only
 - Geometry: Tension fixture (rectangle)
 - Procedure of 1 step: Other Axial
 - Environmental Control
 - Temperature: 30 °C
 - Soak time: 60.0 s
 - Test Parameters
 - Duration: 120.0 s
 - Motor direction: Tension
 - Hencky strain rate: 1.0 1/s
 - Maximum gap change: 15.0 mm
 - Sampling
 - Sampling rate: 1.0 pts/s
Summary of Day 1
Summary

- Introduction to Dynamic Mechanical Analysis
 - Importance of mechanical analysis
 - Conventional (non-oscillatory) vs dynamic (oscillatory) mechanical analysis
 - Viscoelasticity
 - Definition and physical significance of viscoelastic parameters

- DMA Instrumentation and Clamps
 - DMAs offered by TA Instruments
 - Discovery DMA 850
 - RSA-G2
 - TA Electroforce series
 - Common clamp configurations
 - Use of stiffness as a guide to choose the appropriate clamp
 - Clamp calibration routines
Summary: DMA experiments

- Significance of pre-load force and force track
- Dynamic tests
 - Strain/amplitude sweep
 - Time sweep
 - Frequency sweep
 - Temperature ramp
 - Temperature sweep
- Transient tests
 - Creep-recovery
 - Stress-relaxation
 - Iso-strain temperature ramp
 - Iso-stress temperature ramp
 - Stress-strain tests
Getting Started Manuals on your desktop

Discovery DMA 850 Manuals
- To view the desired manual using Acrobat Reader, click the name in the list below:
 - TA Manual Supplement (Contains important information applicable to all manuals.)
- Instrument Documentation
 - Discovery DMA 850 Getting Started Guide
- Accessory Documentation
 - Air Chiller System (ACS) Getting Started Guide
 - DMA-Perp Accessory Getting Started Guide
 - Gas Cooling Assembly (DCCS) Getting Started Guide
 - Nitrogen Pump Cooler (NPC) Getting Started Guide
- Software Documentation
 - What's New in TRIOS Software
 - Installing TRIOS Software
- Site Preparation Guides and Installation Requirements
 - Discovery DMA 850 Site Preparation Guide
- Additional Information
 - DMA Clamping Factors for Compression Clamps

RSA-G2 Manuals
- To view the desired manual using Acrobat Reader, click the name in the list below:
 - TA Manual Supplement (Contains important information applicable to all manuals.)
- Instrument & Accessory Documentation
 - RSA-G2 Getting Started Guide
 - RSA-G2 PC01 Camera Kit Installation Guide
 - RSA-G2 LN2 Kit Installation Guide
 - RSA-G2 Chiller Panel Kit Installation Instructions
 - RSA-G2 Electric Accessory Getting Started Guide
 - ACS Getting Started Guide - UPDATED
- Software Documentation
 - What's New in TRIOS Software
 - Installing TRIOS Software
 - Configuring a New Geometry in TRIOS Software
- Miscellaneous Documentation
 - RSA-G2 Site Preparation Guide

Q Series™ Manuals
- To view the desired manual using Acrobat Reader, click the name in the list below:
 - TA Manual Supplement (Contains important information applicable to all manuals.)
- Instrument & Accessory Manuals
 - TA Series™ Instrument Control Getting Started Guide
 - Universal Analysis Getting Started Guide
 - Advantage Integrity™ Getting Started Guide
 - Specialty Library Getting Started Guide
 - BMX File Utilities
- Software Manuals
 - Q Series™ Instrument Control Getting Started Guide
 - Universal Analysis Getting Started Guide
 - Advantage Integrity™ Getting Started Guide
 - Specialty Library Getting Started Guide
 - BMX File Utilities
- Miscellaneous Documents
 - Installing/Updating Advantage™
 - Updating Q Series™ Instrument Software
 - New Features in Advantage™
 - New Features in Advantage Integrity™
 - TA Update

New Features in Advantage™
- DMS DSC Getting Started Guide
- DCW Getting Started Guide
- QA Series™ Getting Started Guide
- DMA Scanning Guide
- DMAS Accessory Getting Started
- TGA™ Series™ Getting Started Guide
- TQ Series™ Getting Started Guide
- TA Update

New Features in Advantage Integrity™
- DMS DSC Getting Started Guide
- DCW Getting Started Guide
- QA Series™ Getting Started Guide
- DMA Scanning Guide
- DMAS Accessory Getting Started
- TGA™ Series™ Getting Started Guide
- TQ Series™ Getting Started Guide
- TA Update
Available DMA Tests

Express (Single Step) Tests
Select from the following test names for more information.

- Oscillation: Temperature Sweep
- Oscillation: Frequency Sweep
- Oscillation: Temperature Ramp
- Oscillation: Strain Sweep
- Oscillation: Stress Sweep
- Oscillation: Temperature Sweep (Multifrequency)
- Oscillation: Temperature Ramp (Multifrequency)
- Oscillation: Time Sweep
- Oscillation: Temperature Ramp (Multifrequency)
- Rate Control: Strain Ramp
- Rate Control: Stress Ramp

Unlimited (Multi-Step) Tests
Select from the following test names for more information.

- Conditioning Temperature
- Conditioning Data
- Conditioning Other
- Conditioning Strain
- Conditioning Stress
- Conditioning Repeat
- Oscillation Temperature Sweep

Trios and Advantage Help
Instructional Videos

- From www.tainstruments.com click on Videos, Support or Training

- Select Videos for TA Tech Tips, Webinars and Quick Start Courses

See also: https://www.youtube.com/user/TATechTips
Instructional Video Resources

Quickstart e-Training Courses

Web based e-Training Courses

TA Instruments offers a variety of training opportunities via the Internet. e-Training opportunities include the following:

QUICKSTART e-TRAINING COURSES

QuickStart e-Training courses are designed to teach a new user how to set up and run samples on their analyzers. These 60-90 minute courses are available whenever you are. These pre-recorded courses are available to anyone at no charge. Typically these courses should be attended shortly after installation.

Contact Us for Web based e-Training Courses

https://www.tainstruments.com/videos/quick-start-guides/
Need DMA HELP?!?

• Check the manuals, help and error help.
• Contact the TA Instruments Rheology Hotline
 ▪ Email rheologysupport@tainstruments.com
• Call the TA Instruments Service Hotline
 ▪ 302-427-4050 M-F 8-4:30 ET
• Call your local Technical or Service Representative
• Visit our Website www.tainstruments.com for training videos, TA Tech tips, application notes and much more!