Rheology: Basic Theory and Applications Training

Section #1

Terri Chen PhD Senior Applications Engineer TA Instruments – Waters LLC

TA

©2020 TA Instruments

Agenda

Section 1 (2 hours)

- Basics in rheology and instrumentation
 - Rheology theory
 - How rheometers work and geometry selections
- Introduction to all rheological methods
 - Flow experiments
 - Oscillatory experiments
 - Transient experiments

Section 2 (2 hours)

- Rheology Applications- how to select correct geometries and test methods
 - Structured fluids
 - Low viscosity liquids
 - > Creams/slurries/pastes
 - Gels and soft solids
 - Polymers
 - Polymer melts
 - Reactive polymers
 - Solid polymers

Rheology: An Introduction

Rheology is the science of <u>flow</u> and <u>deformation</u> of matter

What Rheology Measures

Viscosity (Liquids)

• Elasticity (Solids)

TA

Viscoelasticity (Liquids to Solids)

What is Elasticity?

- In 1660, Robert Hooke developed his "True Theory of Elasticity"
 - Model spring
 - Observations stress is linearly proportional to the deformation
 - Young's Modulus is the slope of the stress and strain curve

What is Viscosity?

- In 1687, Isaac Newton studied the flow behavior of liquids
 - Model dashpot
 - Observations stress is linearly proportional to shear rate
 - Viscosity is the ratio of the stress and rate curve

How to Describe Viscoelasticity?

 Viscoelastic Materials: Force depends on both deformation and rate of deformation and vice versa

Instrumentation

Rotational Rheometers by TA

ARES G2

Controlled Strain Dual Head SMT

DHR - 1,2,3

Controlled Stress Single Head CMT

HR - 10,20,30

Controlled Stress Single Head CMT

Rotational Rheometer Designs

Closed Die Cavity Rheometer by TA

RPA Elite, RPA Flex and MDR

Controlled Strain SMT or Dual Head

TA

What does a Rheometer measure?

- Rheometer an instrument that measures both viscosity and viscoelasticity of fluids, semi-solids and solids
- It can provide information about the material's:
 - Viscosity defined as a material's resistance to deformation and is a function of shear rate or stress, with time and temperature dependence
 - Viscoelasticity is a property of a material that exhibits both viscous and elastic character. Measurements of G', G", tan δ with respect to time, temperature, frequency and stress/strain are important for characterization.

How do Rheometers Work?

• The study of *stress* and *deformation* relationship

Shear stress
$$\sigma = \frac{F}{A}$$

Shear strain $\gamma = \frac{\Delta x}{y_0}$
Shear rate $= \dot{\gamma} = \frac{1}{y_0} \cdot \frac{dx(t)}{dt}$

$$\frac{\text{Stress}}{\text{Shear rate}} = \text{Viscosity}$$

 $\frac{\text{Stress}}{\text{Strain}} = \text{Modulus}$

How do Rheometers Work?

- In a rheological measurement, stress; strain and strain rate (shear rate) are all calculated signals
- The raw signals behind the scene are torque; angular displacement and angular velocity

Fundamentally, a rotational rheometer will apply or measure:

1. Torque (Force)

- 2. Angular Displacement
 - **3.** Angular Velocity

Measured parameter: torque

- Torque (M) is a measure of how much a force (F) acting on an object causes that object to rotate.
 - The object rotates about an axis, called the pivot point
 - The distance (r) from the pivot point to the point where the force acts is called the moment arm
 - The angle (θ) at which the force acts at the moment arm

$$M = r \cdot F \cdot \sin \theta = r \cdot F$$

(for $\theta = 90^{\circ}$ as shown)

Calculated parameter: stress

Shear stress is calculated from the torque and geometry stress constant

$\sigma = M \cdot K_{\sigma}$

 σ = shear stress (Pa or Dyne/cm²)

 $M = torque (N \cdot m \text{ or } gm \cdot cm)$

 K_{σ} = stress constant

• The stress constant, K_{σ} , is dependent on measurement geometry and/or initial sample dimensions

Measured parameter: angular displacement

• Angular displacement (θ) is the angle, in radians, through which an object moves on a circular path

s = arc length (or linear displacement)

r = radius of a circle

Conversion: degrees = radians $\cdot 180/\pi$

 $\theta = s/r$

Calculated parameter: strain

 Strain is a measure of deformation representing the angular displacement relative to a reference length

$\gamma = \theta \cdot K_{\gamma}$

 γ = shear strain (no units)

 θ = angular displacement (radians)

 K_{γ} = strain constant

- The strain constant, K_{γ} , is dependent on measurement geometry and/or initial sample dimensions
- Calculate percent strain (γ %) by multiplying strain by 100

Modes of Deformation

TA

Equation for modulus

Measured parameter: angular velocity

• Angular velocity (Ω) is the change in angular displacement (θ) per unit time of measurement

Note: linear velocity V = $\Delta s / \Delta t$

$$\Omega = \Delta \theta / \Delta t$$

 Ω = angular velocity (radians/s) θ = angular displacement (radians) t = time (s)

Calculated parameter: shear rate

• Shear rate is calculated from the angular velocity and geometry strain constant

$\dot{\gamma} = \Omega \cdot K_{\gamma}$

 $\dot{\gamma}$ = shear rate (s⁻¹) Ω = angular velocity (radians/s) K_{γ} = strain constant

 $^{\bullet}$ The strain constant, $K_{\gamma}\!_{\gamma}$ is dependent on measurement geometry and/or initial sample dimensions

Equation for viscosity

TA

Discovery Hybrid Rheometer Specifications

Specification	HR-3	HR-2	HR-1
Bearing Type, Thrust	Magnetic	Magnetic	Magnetic
Bearing Type, Radial	Porous Carbon	Porous Carbon	Porous Carbon
Motor Design	Drag Cup	Drag Cup	Drag Cup
Minimum Torque (nN.m) Oscillation	0.5	2	10
Minimum Torque (nN.m) Steady Shear	5	10	20
Maximum Torque (mN.m)	200	200	150
Torque Resolution (nN.m)	0.05	0.1	0.1
Minimum Frequency (Hz)	1.0E-07	1.0E-07	1.0E-07
Maximum Frequency (Hz)	100	100	100
Minimum Angular Velocity (rad/s)	0	0	0
Maximum Angular Velocity (rad/s)	300	300	300
Displacement Transducer	Optical encoder	Optical encoder	Optical encoder
Optical Encoder Dual Reader	Standard	N/A	N/A
Displacement Resolution (nrad)	2	10	10
Step Time, Strain (ms)	15	15	15
Step Time, Rate (ms)	5	5	5
Normal/Axial Force Transducer	FRT	FRT	FRT
Maximum Normal Force (N)	50	50	50
Normal Force Sensitivity (N)	0.005	0.005	0.01
Normal Force Resolution (mN)	0.5	0.5	1

DHR - DMA mode (optional)		
Motor Control	FRT	
Minimum Force (N) Oscillation	0.1	
Maximum Axial Force (N)	50	
Minimum Displacement (μm) Oscillation	1.0	
Maximum Displacement (μm) Oscillation	100	
Displacement Resolution (nm)	10	
Axial Frequency Range (Hz)	1 x 10 ⁻⁵ to 16	

HR 30/20/10 Instrument Features

Specification/ Feature	HR 30	HR 20	HR 10
Bearing Type, Thrust	Magnetic	Magnetic	Magnetic
Bearing Type, Radial	Porous Carbon	Porous Carbon	Porous Carbon
Minimum Torque (nN.m) Oscillation	0.3	1	5
Minimum Torque (nN.m) Steady Shear	1	3	5
Maximum Torque (nN.m)	200	200	200
Optical Encoder Dual Reader	•	•	-
Displacement Resolution (nrad)	2	2	10
DMA Mode	•	0	-
True Position Sensor (TPS)	•	•	•
Controlled Stress (steady, transient, oscillation)	•	•	•
Controlled Strain (steady, transient, iterative oscillation)	•	•	•
Direct Strain (oscillation)	•	•	0
Fast data collection	•	•	-
Normal Force measurements with FRT	•	•	•
Axial and tack testing	•	•	0
One-Touch-Away Display	•	•	•
Integrated Sample Lighting	•	•	•
FastTrack for asphalt testing	•	•	•
AutoPilot	0	0	0

DWA Mode Specifications		
Motor Control	Force Rebalance Transducer	
Minimum Force in Oscillation	3 mN	
Maximum Axial Force	50 N	
Minimum Displacement in Oscillation	0.01 µm	
Maximum Displacement in Oscillation	100 µm	
Axial Frequency Range	6×10 ⁻⁵ rad/s to 100 rad/s (10 ⁻⁵ Hz to 16 Hz)	

ARES-G2 Rheometer Specifications

Force/Torque Rebalance Transducer (Sample Stress)		
	Force/ I orque Rebalance	
Transducer Torque Motor	Brushless DC	
Transducer Normal/Axial Motor	Brushless DC	
Minimum Torque (μN.m) Oscillation	0.05	
Minimum Torque (μ N.m) Steady Shear	0.1	
Maximum Torque (mN.m)	200	
Torque Resolution (nN.m)	1	
Transducer Normal/Axial Force Range (N)	0.001 to 20	
Transducer Bearing	Groove Compensated Air	

Driver Motor (Sample Deformation)		
Maximum Motor Torque (mN.m)	800	
Motor Design	Brushless DC	
Motor Bearing	Jeweled Air, Sapphire	
Displacement Control/ Sensing	Optical Encoder	
Strain Resolution (µrad)	0.04	
Minimum Angular Displacement (µrad)	1	
Oscillation		
Maximum Angular Displacement (µrad)	Unlimited	
Steady Shear		
Angular Velocity Range (rad/s)	1x 10 ⁻⁶ to 300	
Angular Frequency Range (rad/s)	1x 10 ⁻⁷ to 628	
Step Change, Velocity (ms)	5	
Step Change, Strain (ms)	10	

Orthogonal Superposition (OSP) and DMA modes		
Motor Control	FRT	
Minimum Transducer Force (N) Oscillation	0.001	
Maximum Transducer Force (N)	20	
Minimum Displacement (μm) Oscillation	0.5	
Maximum Displacement (μm) Oscillation	50	
Displacement Resolution (nm)	10	
Axial Frequency Range (Hz)	1 x 10 ⁻⁵ to 16	

Geometries

Geometry Options

Assess material to test

- Geometry material of construction, size and surface
- In general, lower viscosity use larger diameter or larger contact area and higher viscosity or more solid-like smaller diameter
- Consider:
 - Volume requirements
 - Particle size, settling or mixing necessary
 - Loading procedure for structured substances (Pre-shear)
 - Evaporation seal sample edge, solvent trap, or RH accessory
 - Surface slip and edge fracture

Cones and Plates

Concentric Cylinders (or Cups) and Rotors (or Bobs)

Parallel Plate

Strain Constant:

$K_{\gamma} = \frac{r}{h}$

(to convert angular velocity, rad/sec, to shear rate, 1/sec, at the edge or angular displacement, radians, to shear strain (unitless) at the edge. The radius, r, and the gap, h, are expressed in meters)

Stress Constant:

$$K_{\sigma} = \frac{2}{\pi r^3}$$

(to convert torque, N·m, to shear stress at the edge, Pa, for Newtonian fluids. The radius, r, is expressed in meters)

Cone and Plate

Strain Constant: $K_{\gamma} = \frac{1}{\beta}$

(to convert angular velocity, rad/sec, to shear rate. 1/sec, or angular displacement, radians, to shear strain, which is unit less. The angle, β , is expressed in radians)

Stress Constant:

$$K_{\sigma} = \frac{3}{2\pi r^3}$$

(to convert torque, N·m, to shear stress, Pa. The radius, r, is expressed in meters)

Effective Shear Rate Varies Across a Parallel Plate

 For a given angle of deformation, there is a greater arc of deformation at the edge of the plate than at the center

 $= \frac{dx}{h}$ dx increases further from the center, h stays constant

Single-point correction for the parallel plate geometry (0.76 radius) [M.S. Carvalho, M. Padmanabhan and C.W. Macosko, *J. Rheol.* 38 (1994) 1925-1936]

Shear Rate is Normalized across a Cone

 The cone shape produces a smaller gap height closer to inside, so the shear on the sample is constant

$$\gamma = \frac{dx}{h}$$
 h increases proportionally to dx, γ is uniform

Limitations of Cone Plate

- Cone geometries have small truncation gaps
- Using the cone and plate to measure a sample that has large particles could result in artifacts since the particles could be ground between the cone and the plate

- 4° degrees ~ 120 microns

Gap must be > or $= 10 \times particle size$

Cone & Plate

Concentric Cylinder

Strain Constant:

$$K_{\gamma} = \frac{1 + \left(\frac{r_2}{r_1}\right)^2}{\left(\frac{r_2}{r_1}\right)^2 - 1}$$

(to convert angular velocity, rad/sec, to shear rate, 1/sec, or angular displacement, radians, to shear strain (unit less). The radii, r_1 (inner) and r_2 (outer), are expressed in meters)

Stress Constant:

$$K_{\sigma} = \frac{1}{4\pi l} \left[\frac{1 + \left(\frac{r_2}{r_1}\right)^2}{c_l r_2^2} \right]$$

(to convert torque, N·m, to shear stress, Pa. The bob length, I, and the radius, r, are expressed in meters) c_{l} is the face factor

Double Wall

Use for very low viscosity systems (e.g. <1 mPas)

Peltier Concentric Cylinders

Concentric Cylinder Cup and Rotor Compatibility Chart

Cup/Rotor	DIN	Recessed	Starch	Vane	Wide Gap	Double	Helical
		End	Impelier		vane	Gap	ROIOL
Standard (rad= 15 mm)				•	•		
Large Diameter (rad= 22 mm)							
Starch (rad= 18.5 mm)		•			•		
Grooved				•	•		
Double Gap							
Helical (rad= 17 mm)				1			

Torsion Rectangular

	Stress constant: $K_{\tau} = \frac{\left(3 + \frac{1.8}{w}\right)}{\left(w \cdot t^2\right)}$ Strain constant: $K_{\gamma} = \frac{1}{l\left[1 - 0\right]}$	$\frac{\frac{3}{2}}{\frac{1}{2}}$ $\frac{t}{t}$ $\frac{t}{378\left(\frac{t}{w}\right)^{2}}$ w = Width I = Length t = Thickness
	<u>Advantages:</u>	<u>Disadvantages</u> :
\geq	 High modulus samples Small temperature gradient Simple to prepare 	 No pure Torsion mode for high strains

TA

Torsion and DMA Measurements

- Torsion and DMA geometries allow solid samples to be characterized in a temperature-controlled environment
 - Torsion measures G', G", and Tan δ
 - DMA measures E', E", and Tan δ
 - O ARES G2 DMA is standard function (50 μm amplitude)
 - O DMA is an optional DHR function (100 μm amplitude)

Rectangular and cylindrical torsion

DMA cantilever, 3-point bending and tension clamps

Experimental Designs 1. Flow Tests

Viscosity Values

Materials	Viscosity η (Pa.s)
Air /Gas	0.00001
Water	0.001
Milk/ Coffee	0.01
Olive oil	0.1
Glycerol	1
Liquid Honey	10
Molasses	100
Polymer Melt	1000
Asphalt Binder	100,000

Viscosity Behaviors

Newtonian and non-Newtonian

Rheological Methods

- Common rheological methods for measuring viscosity of liquids
 - Single rate/stress flow
 - Continuous rate/stress ramp
 - Stepped or steady state flow
 - Flow temperature ramp

Single Rate/Stress Test

<u>USES</u>

- Single point testing
- Scope the time for steady state under certain rate

Environmental	ontrol	T		
Temperature	25	°C	Inherit Set Point	
Soak Time	180.0	s	 Wait For Temperat 	ure
Test Parameters				
Duration		60.0	s	
Shear Rate		1.0	1/s	
Inherit initial v	alue			
Sampling interv	/al	1.0) s/pt	

Body Lotion: Single Rate Test

Continuous Ramp

<u>USES</u>

- Scouting viscosity over wide range of shear
- Measure yield stress or thixotropy

Environmental C	ontrol					
Temperature	25	°C	🗌 Inherit	Set Point	t	
Soak Time	180.0	s	🖌 Wait Fo	or Tempe	erature	€
Test Parameters						
Duration		60.0	S			
Mode ● Linear ◯ Lo	g		4.4.75° P			
Initial shear rate		0.0	1/s to	100.0	1/s	~
Inherit initial	v <mark>alue</mark> on					
Sampling inter	/al	1.() s/pt	~		
Sampling inter	/al	1,0	o s/pt			

Isothermal temperature

In TRIOS: Flow - Ramp

a constant speed

Ramp stress or shear rate at

1: Flow Ramp

Viscosity of a Body Lotion

Measure Yield Stress of a Body Lotion

 Body lotion does not flow unless the applied stress exceeds a certain value – the yield point.

Continuous Ramp Up and Down

<u>USES</u>

- Scouting viscosity over wide range of shear
- Measure yield stress or thixotropy

Duration	60.0	s			
Mode ● Linear ○ Log					
Initial choar rato	0.0	1/s to	100.0	1/s	Ŷ

Thixotropy of a Blue Paint

Flow Sweep – Steady State Flow

Viscosity Curves of Various Fluids

Flow Temperature Ramp

<u>USES</u>

 Measure the viscosity change vs. temperature

- Constant shear stress or shear rate
- Ramp temperature

In TRIOS: Flow – Temp Ramp

1: Flow Temperature Ramp

Environmental Control			
Start temperature	25	°C	Use entered value *
Soak time	180.0	S	✓ Wait for temperature
Ramp rate	2.0	°C/min	
End temperature	80	°C	
Soak time after ramp	0.0	s	
Estimated time to complete	00:27:30	hh:mm:ss	
Test Parameters			
Shoar Data	10.0	1/0	<u></u>

1.0	s/pt	~	
	1.0	1.0 s/pt	1.0 s/pt ~

Viscosity of Honey: Temperature Dependence

Water is not a Good Viscosity Standard

- Surface tension causes artifact shear thinning under low torque
- Secondary flow shows artifact shear thickening under high shear
- Use a large diameter geometry with a smaller gap

Wall Slip Phenomena

Solutions To Minimize Wall Slip

- Diagnosis method
 - Running the same experiment at different gaps. For samples that don't slip, the results will be independent of the gap
- Solutions
 - Use a grooved cup with vane or helical shape rotor geometry
 - Use a roughened surface geometry

Edge Fracture

- Edge fracture is caused by the elasticity of the fluids
- When shearing a viscoelastic material, a large normal stress difference (created from its elasticity) can lead to a crack formation at the geometry edge. This is called edge fracture.
- Results: decrease in viscosity
- To minimize edge fracture
 - Decrease measurement gap
 - Use partitioned plate

The Cox-Merz Rule

- For materials that exhibit wall slip or edge fracture, one alternative way to obtain viscosity information over shear is to use the Cox-Merz rule
- Cox-Merz "rule" is an empirical relationship. It was observed that in many polymeric systems, the steady shear viscosity plotted against shear rate is correlated with the complex viscosity plotted against frequency

Cox-Merz Transformation Benefit

 The Cox-Merz transformation works primarily with polymer melts and polymer solutions

Avoid Testing Artifacts

•TA Webinar - Professor Randy H. Ewoldt

http://www.tainstruments.com/randy-h-ewoldt-experimental-challenges-of-shearrheology-how-to-avoid-bad-data-2/

About the Speaker

Randy H. Ewoldt is an Assistant Professor in the Department of Mechanical Science and Engineering at the University of Illinois at Urbana-Champaign. He has Ph.D. and S.M. degrees from MIT, and a B.S. degree from Iowa State, all in Mechanical Engineering. Before joining Illinois, he held a post-doctoral fellowship at the University of Minnesota. At Illinois, his research group studies rheology, fluid mechanics, and design of complex fluids; in particular, this includes yield stress fluids, polymer gels, biological materials, and largeamplitude oscillatory shear (LAOS) characterization. His work has been recognized by young investigator awards from NSF, ASME, 3M, DuPont, and The Society of Rheology.

Ewoldt R.H., Johnston M. T., Caretta L.M., "Experimental challenges of shear rheology: how to avoid bad data", in: S. Spagnolie (Editor), *Complex Fluids in Biological Systems*, Springer (2015) 1-36

Flow Models

• Fit viscosity curves with mathematical models

Newtonian model
Power law model
Bingham model
Williamson model
Sisko model
Herschel-Bulkley model

Cross model
Carreau model
Carreau-Yasuda model
Casson model
Ellis model

Extrapolate to zero shear and infinite shear viscosity

Calculate viscosity at a specific point

Where to Find Model Equations

Flow Model Equations

Flow Model Equations – Continued

Fit Your Flow Data with a Model

Experimental Designs 2. Oscillation Tests

Not Everything Flows

- Liquid flows freely, remains at constant volume and takes the shape of its container
- Solid has a fixed shape and volume, no flow
- Semi-solid shows both viscous and elastic behavior. May flow under certain temperature or time scale

Dynamic Oscillatory Tests

- Apply a sinusoidal strain to the sample at a certain frequency
- Monitor sample response in stress
- The shift between the input strain and output stress is the phase angle

Viscoelastic Parameters

<u>Complex Modulus:</u> Measure of materials overall resistance to deformation

Elastic (Storage) Modulus: Measure of elasticity of material and ability to store energy

<u>Viscous (loss) Modulus:</u> The ability of the material to dissipate energy

Tan Delta: Measure of material damping

<u>Complex Viscosity</u>: Viscosity measured in an oscillatory experiment (ω in rad/s)

$$G^* = \left(\frac{Stress^*}{Strain}\right)$$

 $G' = \left(\frac{\text{Stress}^*}{\text{Strain}}\right)\cos\delta$

 $G'' = \left(\frac{Stress^*}{Strain}\right) \sin \delta$

$$\tan \delta = \left(\frac{G'}{G'}\right)$$

$$\eta^* = \left(\frac{G^*}{\omega}\right)$$

Dynamic Oscillation Methods

- Stress, strain, or amplitude sweep
- Time sweep
- Frequency sweep
- Temperature ramp
- Temperature sweep (or step)
 - Time temperature superposition (TTS)

ţ	L: Oscillation	Frequency
	Fr	equency
HR or DHR	Temper Te Soak Ti Ti	mperature Ramp mperature Sweep me nplitude
	Test Pa Fa	st Sampling anual
	1: Oscillation	Frequency Y
	Fruiton	requency
ARES G2	Temperatu T Soak Time T	emperature Ramp emperature Sweep mplitude
	Test Paral T	îme
	Strain %	fultiwave
	Logarithmi (ast Sampling Cycle Sweep

TAINSTRUMENTS.COM

Dynamic Strain or Stress Sweep

<u>USES</u>

- Measure sample LVE
- Measure yield stress
- Measure non-linear viscoelastic properties (LAOS)

- The material response to increasing deformation amplitude (strain or stress) is monitored at a constant frequency and temperature
- In TRIOS: Amplitude

1: Oscillation Amplitude

Cemperature	25	°C		Inherit Set	Poi	nt			
Soak Time	180.0	s	-	Wait For T	em	peratu	re		
est Parameters	5								
Angular freque	ency			10.0	ra	d/s	~		
Logarithmic sv	veep								Ŷ
Strain %				0.01	%	to	100.0	%	Ŷ
Points per dec	ade			5	1			-10	
Linear and Non-linear Viscoelasticity

What Affect the LVR

LAOS Webinar

• TA Webinar - Professor Gareth H. Mckinley

https://www.tainstruments.com/rheological-fingerprinting-of-complex-fluids-tainstruments-webinar/

<u>Gareth H. McKinley</u> is Professor and Associate Head of the Department of Mechanical Engineering at MIT. His research interests include extensional rheometry, microfluidic rheometry and non-Newtonian fluid dynamics. He has aided in the development of several rheological techniques for characterizing the extensional rheology of polymer solutions, micellar liquids and other complex fluids. He is a Fellow of the American Physical Society, winner of the 1994 Annual Award of the British Society of Rheology, and this year's Bingham Medalist from the Society of Rheology.

Hyun, K., Wilhelm, M., Klein, C.O., Cho, K.S., Nam, J.G., Ahn, K.H., Lee, S.J., Ewoldt, R.H. and McKinley, G.H., **A** Review of Nonlinear Oscillatory Shear Tests: Analysis and Application of Large Amplitude Oscillatory Shear (LAOS), *Rev. Poly. Sci*, (2010) **36**, 1697 - 1753; DOI:10.1016/ j.progpolymsci.2011.02.002. <u>GHM164.pdf Abstract</u>

Dynamic Time Sweep

Time

<u>USES</u>

- Cure Studies
- Stability against thermal degradation
- Time dependent Thixotropy

- The material response is monitored at a constant frequency, amplitude and temperature.
- In TRIOS: Time
 1: Oscillation Time

Temperature	25	°C	Inherit Se	et Point	
Soak Time	180.0	s	Vait For Temperatur		
Test Parameters	3				
Duration			300.0	s	
Maximize numb	er of poi	nts			Ŷ
Strain %			0.1	%	č
Single point					Ŷ
Angular freguer	су		6.28319	rad/s	

Epoxy Curing

Time Sweep – Polymer Melt Thermal Stability

Frequency Sweep

<u>USES</u>

- Measure polymer relaxation
- Measure polymer Mw/ MWD
- Scouting differences of viscoelastic properties between formulations

- The material response to increasing frequency (rate of deformation) is monitored at a constant amplitude (strain or stress) and temperature.
- In TRIOS: Frequency

1: Oscillation Frequency

Strain %	0.1	%			*
Logarithmic sweep					*
Angular frequency	100.0	rad/s to	0.1	rad/s	٠
Points per decade	5				

TAINSTRUMENTS.COM

Frequency Sweep – polymer melt (ASTM D4440)

https://www.tainstruments.com/analyzing-molecular-weight-distribution-w-rheology/

TAINSTRUMENTS.COM

Frequency Sweep – Lotions

Dynamic Temperature Ramp

<u>USES</u>

- Measure material's viscoelastic properties vs. temperature
- Measure glass transition and subambient transition temperatures

Linear heating rate is applied, and the material response is monitored at a constant frequency and constant amplitude

In TRIOS: Temp Ramp

1: Oscillation Temperature Ramp

Start temperature	-100	°C	Use entered value v
Soak time	180.0	s	✓ Wait for temperature
End temperature	150	°C	
Soak time after ramp	0.0	S	
Ramp rate	3.0	°C/min	÷
Estimated time to complete	01:23:20	hh:mm:ss	8
Test Parameters			
Maximize number of points			i.
Maximize number of points Strain %	0.05	%	ن ن
Maximize number of points Strain % Single point	0.05	%	ن ــــــــــــــــــــــــــــــــــــ

Dynamic Temp Ramp Test on ABS

Temperature Sweep (or Step)

<u>USES</u>

- Measure material's viscoelastic properties vs. temperature
- Time-Temperature Superposition test (TTS)

- Step and hold temperature then monitor material response. No thermal lag
- In TRIOS: Temp Sweep

1: Oscillation Temperature Sweep

TAINSTRUMENTS.COM

Time-Temperature Superposition (TTS)

• Rheological measurement results on a non-crosslinked adhesive

Experimental Designs 3. Transient Tests

Stress Relaxation Experiment

- Strain is applied to sample instantaneously (in principle) and held constant with time.
- Stress is monitored as a function of time $\sigma(t)$.

Stress Relaxation- Sample Response

O-rings: Stress Relaxation

 Squeeze the O-ring to 3% strain. Hold it constant, then measure how long it takes for the force to relax

Creep Recovery Experiment

- Creep: Stress is applied to sample instantaneously at t₁, and held constant for a specific period of time. The strain is monitored as a function of time (γ(t) or ε(t))
- Recovery: Stress is reduced to zero at t_2 , and the strain is monitored as a function of time ($\gamma(t)$ or $\epsilon(t)$)

eep compi	lance J -	Stress	_	
: Step (Transient) Creep-Re	ecovery			
Environmental Contro	bl			
Temperature	25 °C 🗌 Inherit	Set Point		
Soak Time 18	0.0 s 🔽 Wait Fo	or Temperature		
Test Parameters Stress	100.0 Pa	*		
Creen Duration	120.0			
Recovery Duration	300.0 s			
Sampling O Linear	• Fast			
Creen braking				

Creep Recovery – Sample Response

Creep Recovery Experiment

Mark, J., et. al., Physical Properties of Polymers, American Chemical Society, 1984, p. 102.

Memory Foam: Multi-Step Creep Recovery

Where to Find Help

TAINSTRUMENTS.COM

Web Based e-Training Courses

Web based e-Training Courses

TA Instruments offers a variety of training opportunities via the Internet. e-Training opportunities include the following:

QUICKSTART e-TRAINING COURSES

QuickStart e-Training courses are designed to teach a new user how to set up and run samples on their analyzers. These 60-90 minute courses are available whenever you are. These pre-recorded courses are available to anyone at no charge. Typically these courses should be attended shortly after installation.

https://www.tainstruments.com/training/e-training-courses/

Practical Series Training Course

https://www.tainstruments.com/practical-series-training-courses/

TA Webinars - Rheology

TA Website – Other Resources

Tech Tips

Installation & Calibration of the Relative Humidity

Single Cantilever Installation & Calibration – DMA 850

Installation & Clamp Installation & Calibration for the Calibration for the Discovery DMA 850

Installation & Calibration – DMA 850

Loading the Powder Clamp on the Q800 DMA with 35mm Dual

Linear Film Tension Clamp for DMA using the ARES-G2

Three Point Bend

DMA850

Installation and

Calibration for the UV

Accessory on the Ares

Cantilever Clamp

TA Tech Tip

G2 Pheome

Frequency Sweep Improving Structurea Tests for RPA Flex and Fluid Measurements w/ PDA Flite Pre-Shearing

Of A Sample- TA Interfacial Measurements – TA TechTips

Applications Notes Library

Applications Notes Library

TECHT

Our instruments are used in a variety of products, in multiple industries. The application notes below provide more detail on specific potential applications. You can search for specific app notes with the search field.

meology 261 item							
Title	Product Category	Ref#	Link				
Hot Melt Adhesives	Rheology	AAN001	Download Note				
Generating Mastercurves	Rheology	AAN005e	Download Note				
Analytical Rheology	Rheology	AAN006e	Download Note				
Normal Stresses in Shear Flow	Rheology	AAN007e	Download Note				
Mischungsregein Komplexer Polyersysteme	Rheology	AAN008d	Download Note				
Mixing Rules for Complex Polymer Systems	Rheology	AAN008e	Download Note				
Application of Rheology of Polymers	Rheology	AAN009	Download Note				
Synergy of the Combined Application of Thermal Analysis and Rheology Monitoring and Characterizing Changing Processes in Materials	Rheology	AAN010e	Download Note				

Seminar Series: Instant Insights

Seminars:

Thermal Analysis and Rheology

Medical Device and Biomaterials Testing

Elastomers and Rubber Compounds

TRIOS AutoPilot & TRIOS Guardian

Thermal, Rheological and Mechanical Characterizations of Thermoset

Tianhong (Terri) Chen, Ph.D.

Thermosetting materials, such as epoxy, have been widely applied in many areas including automotive, aerospace and electronics industries in the form of surface coating, structural adhesives, advanced composites and packaging materials.

View Archive

Advancements in the Characterization of Pharmaceuticals by DSC

Jason Saienga, Ph.D.

Differential Scanning Calorimetry is a simple, yet powerful technique to gain a broad understanding of the characteristics of pharmaceutical materials, from the crystalline structure that exists to the compatibility of a specific formulation.

View Archive

Steady State & Flash Methods for Thermal Diffusivity and Thermal **Conductivity Determination**

Justin Wynn

In this presentation we will demonstrate accurate and high-throughput methods to measure the critical heat transfer properties of thermal diffusivity and thermal conductivity.

View Archive

- For additional questions:
- Email <u>rheologysupport@tainstruments.com</u>
- Please put Online Training Questions in the subject line
- You can download this presentation from:
 - <u>https://www.tainstruments.com/online-training-course-downloads/</u>

