DSC and MDSC Online Training

Part 2: Applications
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Applications Agenda

+ Oxidation Induction Time

*Heat Capacity (Cp)

*The Glass Transition Temperature (TQ)
*Melting and Crystallization Analysis
*Thermosets: Curing and Crosslinking

-Pharmaceuticals
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Oxidative Stability (OIT) Method

The OIT test characterizes the thermo-oxidative stability of a sample by using DSC

ASTM D3895-19 — OIT for polyolefins
ASTM D1858-08 — OIT for hydrocarbons

An OIT Method (polyolefin)

Isothermal for 5.00 minutes in Nitrogen
Ramp 20°C/min. to 200°C

Isothermal for 5.00 minutes

Select gas: 2 (air or oxygen)

Isothermal for 100.00 minutes (hold to a time where the exotherm reaches a peak to get
accurate OIT)
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Heat Capacity (Cp)

TA

About Heat Capacity

*Heat capacity is the amount of heat required to raise or lower the temperature
of a material by 1°C.

*Specific heat capacity (Cp) refers to a specific mass and temperature change
for the material (J/g°C).

*Heat capacity is directly related to molecular mobility
*Cp increases as molecular mobility increases
=Higher Cp = More Mobility
=Lower Cp = Less Mobility

*Quantitative indicator of structure and stability o
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Change in Cp at Tg is a Measure of Amorphous Structure

PET Cooling Rates from 285°C ("C/min)
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Calculating heat capacity from heat flow data

[ rooimrmmn ]
dH/dt = Cp dT/dt N
o]
“0sd0zmw
25Cimin
=2 -1.657mW-
g
mJ
g 4 Batpiy ] Heat flow (—) sec
E Uncal.Cp (TC) = C sec X 60 (22
J & Heat Rate (——) x wt (mg) mmn
1 -6.620mW min
]
10 | |
E % o & 5o Ed o Tt
B Temperature (“C) Universal V2 74 A I

Heating rate (°C/min) Heat flow (mW) Uncalibrated Cp (J/g°C)

25 0.8402 2.008 Actual Cp =
Apparent Cp x K
5 1.657 1.980 (the heat
capacity
10 3.313 1.980 calibration
constant)
20 6.620 1.978
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Measuring Heat Capacity

*In a DSC experiment, heat capacity is measured as the
absolute value of the heat flow, divided by the heating
rate, and multiplied by a calibration constant.

dH/dt = Cp dT/dt

Heat 'Cp =

Sample [dH/dt
Capacity

dT/dt }(K

Heat Flow Heating Calibration
Rate constant
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Calculating Heat Capacity

*Depending on the DSC that you have there are three different ways to
calculate Cp

= ASTM E1269 (Three Run Method )
+ Applicable to all DSC’s

=Direct Cp — Single Run Method
+ Applicable to DSC 2500, Discovery DSC, Q2000/1000 only
+ Fastest determination

*MDSC® - Single Run Method

+Any DSC w/ MDSC option
« Most accurate determination

TR
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Conventional Method for Cp by DSC (ASTM E1269)

*ASTM E1269: Standard Test Method for Determining Specific
Heat Capacity by Differential Scanning Calorimetry

=Requires three discreet experiments
+Baseline
+ Sapphire
+Sample
=Method
1: Equilibrate at XX.00°C
2: Isothermal for 10.00 min
3: Ramp 20.00°C/min to XX.00°C
4: |sothermal for 10.00 min

The sample weight must be constant throughout the ramp.

TR
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ASTM Method E1269 (Three-Run Method)

*Three experiments are run over a specific temperature
range

=Allow 10 minute isothermal at start and end
=Use 10-20°C/min heating rate
1. Empty pan run (Baseline run)
=Match pan/lid weights to £ 0.05 mg
=Used to establish a reference baseline (absolute heat flow)
2. Sapphire run
=Used to determine calibration constant
=Use same weight of pan/lid as above + 0.05 mg
=Typical weight is 20 — 25 mg
3. Sample run
=Typical weight is 10 — 15 mg

=Use same weight of pan/lid as above + 0.05 mg
A
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ASTM E1269 “3-Run” Method for Determining Cp
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Direct Cp Measurement
*Available in DSC’s with T4P Heat flow mode: DSC 2500,
Discovery DSC, Q2000
*Sapphire used as a calibration standard
*Typical Method
=Heat @10-20°C/min
*Sample Size ~10mg
*For best results — use lowest mass pans possible
TR
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Direct Cp of PMMA - DSC 2500
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Heat Capacity Measurement using Modulated DSC® (MDSC)

=Uses sinusoidal temperature ramp overlaid

upon linear ramp
Recommended Test Conditions
=Separates Heat Capacity and Kinetic

transitions = Period

I . 120 seconds
=Increases sensitivity to Heat Capacity

changes (e.g. Tg) = Heating rate
=Can determine Cp directly in a single run 2-3°C/min
=Best available measurement of Heat Capacity = Amplitude
+1°C

=Accurate & repeatable to within 1-2% or
better

TR
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Heat Capacity by MDSC

0.56
Temperature Rev Cp
°C Ji(g°C
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Change in Cp During Starch Gelatinization
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Cp Signals Show Changes in Structure - Pharmaceutical Material
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Quasi-Isothermal Heat Capacity

- MDSC® can also measure heat capacity isothermally (quasi-isothermally) —
standard DSC can’t do this

* Benefit is to measure structure changes over time

Changes in heat capacity

]

Changes in mobility

Changes in structure

N

TA
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Quasi Isothermal MDSC for Specific Heat Capacity - Procedure

1. Accurately weigh the mass of sapphire and pan
2. Accurately weigh the mass of a reference pan of the same type

3. Set the following conditions
=Amplitude: +/- 1 °C
=Modulation Period: 120 s
=lsothermal Temperature: Set to your desired lower temperature
=|sothermal Time: 15 min (this is a good starting point)
=Temperature Increment: Set to the desired temperature interval
=Number of Increments: Set to the number of intervals you need

TR
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Quasi Isothermal MDSC for Specific Heat Capacity - Procedure
in TRIOS

Mode [Modkiated - Test [MDSCQuasi-sothemal _ ~) (=8

Name MDSC Guasi-isothermal

S Tenpite |Segnent|

Modulate Temperature Amplitude = 1,000 °c

Modulation period 1200 s
Isothermal temperature 10.00 '
Isothermal time 15.0 min
Temperature increment 500 b o
Number of increments ]

TN

TA ‘ TAINSTRUMENTS.COM
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Cp of Sapphire Standard: Determining KCp (reversing)

= 99 _ (o4 cos )
dt '

1.00 140
120
0.95 220.64min I
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)
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Quasi-Isothermal MDSC®

Sample: Quenched PET File: C:. \CrystalliniptCryst3iQpetmdsc 004
DsC

Size: 12.6400 mg
Method: MDSC lso
Comment MDSC lso

008 16
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periment I|"II'III'I||
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KCp (reversing): Temperature Dependence

KCp=

Temperature | Experimental Cp | Literature Cp KCp
0) (/(g-°C) (/g°C)) | (Lit.Cp/Exp.Cp)

26.85 0.8095 0.7788 0.96
46.85 0.8489 0.8188 0.96
66.85 0.8825 0.8548 0.96
86.85 0.9125 0.8871 0.97
106.85 0.9361 0.9161 0.97

C p Theo.
Cpl\leas.

)
(TA ‘ TAINSTRUMENTS.COM
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Quasi Isothermal MDSC®for Specific Heat Capacity
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Epoxy Cure with Quasi-lsothermal MDSC®

15 26
Sample: Epoxy
50.73min Size:10.85mg
1 o 1
104 Cure Exctherm @ 100°C Method: MDSC Iso at 100°C 350424
300422
05 o o
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'__'—‘-—--
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Advantage of MDSCP® for Post Cure Scan

0.2 0.4
Heating Experiment at 3°C/min
after 160min Isothermal Cure @ 100°C
Note Onset of Decomosition s
/r \\\ before Complete Cure y //
021 Sample: Epoxy /’ \\\ // g 04100
ize: / / E 2
. Size: 10.85 mg / \\\- - E §
= = r
E / § =
E 064 Nonreversing __/ g 00404 %
[ Note Inability to £ °>J
= Measure Tg o o
£ Total Z_I_ -
- |
~ 117.14°C
10 Reversing vorsc l 0at0s
028100g-C Same Sancivity
1.4 T T T T I — T -1.2
52 102 152 202 252
Exo Up Temperature (°C) Universal V3.8A TA Instruments
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What Affects the Specific Heat Capacity?
*Amorphous Content
*Aging
+Side Chains
*Polymer Backbone
*Copolymer Composition
*Anything that affects the mobility of the molecules, affects
the Heat Capacity
*Amorphous Cp is greater than Crystalline Cp
*Amorphous Content increases Specific Heat Capacity
TR
32
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The Glass Transition Temperature
(Amorphous Structure)

TA
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Characterization of Amorphous Structure

*Amorphous Structure
=Randomly oriented molecules
=No long-range order
=Liquids, glassy or rubbery solids
=Most polymers are either amorphous or semi-crystalline

*Glass Transition (Tg)
=Due to amorphous (non-crystalline) structure

=Due to macro-molecular motion (translational); i.e., the entire molecule is
free to move relative to adjacent molecules.

=Extremely important transition because the significant change in molecular
mobility at Tg causes significant changes in physical and reactive
properties.

TR
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The Glass Transition (Tg)

*The glass transition is a change in the free volume and molecular mobility in the amorphous phase of

a material that results in a step change in heat capacity.

] Heat Flow (rrivy)

[

204 i
--0.5
g
S 154 3 Glass Transtion is Dete otable by DSG L0
E Heat Capacity Because ofs Step-Change in Heat Capacity
g p--0.7
Below Tg Tg Transition Above Tg 3
« Rigid, Glassy * Rubbery Flow 5 3
d p--0.5
* Immobile, no long 2 quer « Increased Mobility e \
range molecular Transition « Disordered Solid Smors bl \——--———_
movement - lower enthalpy — .____ﬂ g
« Disordered Solid
05 T T
ks 50 110
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—
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A Glass Transition is Reversible

6
Sample: PMMA
Weight: 12.44rmg
Heat/Caol Rate: 10°C/min
PhhiA; Cooling
44
2

Empty Pans

Heat Flow (m\W)
o

24
PIMMA; Heating
44
-B T T T T
50 100 150 200
Bxo Up Temperature (°C)

—
(/T-A? ‘ TAINSTRUMENTS.COM
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Factors affecting Glass Transition and Other Tg measurement

Techniques

*Heating Rate
*Heating & Cooling
*Aging

*Molecular Weight
*Plasticizer

*Filler

Crystalline Content
*Copolymers

*Side Chains
*Polymer Backbone
*Hydrogen Bonding

Anything that affects the mobility of the molecules, affects the
Heat Capacity and, in turn, the Glass Transition

*The Tg can also be measured by other techniques apart

from the standard DSC
=Using Modulated DSC (MDSC)
=Thermomechanical Analysis (TMA)
=Dynamic Mechanical Analysis (DMA)

+Sensitivity of the technique to detect a glass transition:

=Standard DSC < MDSC < TMA < DMA

N
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Effect of Moisture on Tg by DSC
il
Note: Tg shifted by over 40°C
9 Due to loss of water during first heat
= £.41°C
§ 11 82°CH)
u_o_ e T 0.4966 g/ *C
po 05Ty Second Heat
T
24 First Heat
Sample: Amorphous Sucrose; some water
Size: 4.2 mg
Method: DSC 20°C/min
Crimped Pan w/Pinholes; 2 Heats
S 5 20 o0 2 40 a0 & 100
Exo Up Temperature (°C)
N
38
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10mg PMMA Sample at Different Heating Rates

0.1
00
=)
‘g 0.1 4
S
T 02
_3 114.69 °C
‘—“ 03] 10°C/min
£
5]
0.4 4
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=
o 051
L
—
T 06+ 115.23 °C
:f:’ 0°C/min
074
0.8 ; . ; T :
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MDSC: Effect of Frequency on Tg

Effect of Temperature Period on Glass Transition
Temperature in the Reversing Heat Flow Signal

-007
Sample: Quench-cooled PET
Sample Weight. Approx. 10mg
Heating Rate: 4C/min Note That Glass Transition Temperature
Increases Approx. 2C as Modulation Period
0084 Is Decreased (Frequency Increases) from

60 seconds 10 25 seconds

0094

i
% 40 second Penod
L 0104
®
3
=
8 N
o

0114 /

60 second Period
0.124
013 T T T T T T
4 50 60 0 80 80 100 110
ExUp Temperature (°C)

N
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Aged Epoxy: The Tg On The First Heat Cycle

Second Heat after 10°C/min
Cool from 100°C

Heat Flow (m\)

Sample; Aged Epoxy
Weight; 10.40mg
Heat/Cool Rate; 10°C/min

20 a0 50 20

Exo Up Temperature (°C)
Depending on the thermal history of amorphous (glassy) polymers, the glass
transition can appear as a simple step in the baseline or one that has a substantial
endothermic peak that can be misinterpreted as a melting peak.

TR
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Enthalpic Recovery

*By heating a sample above the glass transition temperature and then cooling it
back to room temperature, the previous thermal history is erased.
*The second heat typically shows the true properties of the material rather than the
material properties with some processing effects
*The endothermic peak that develops in the glass transition with aging at
temperatures below the glass transition temperature is due to “enthalpic
relaxation.” This peak is known as enthalpic recovery.

=|t is due to the fact that amorphous materials are not in thermodynamic equilibrium
but, with time, do relax and move towards equilibrium.

TR
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Enthalpic Relaxation and Recovery

*Enthalpic Relaxation

*The process of a meta-stable glass relaxing towards equilibrium at a temperature
below Tg

=Qccurs as the sample is being cooled to temperatures below Tg
=Qccurs as the sample is being stored at temperatures below Tg

*Enthalpic Recovery

=The recovery of energy (J/g) lost during Enthalpic Relaxation. It (peak in DSC data
@ Tg) occurs as the sample is heated to a temperature above Tg

N

TA
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Effect of Annealing on the Tg
=30
-3.51
g 404
E
8
[T
3
T 457 333
Sarmple; PrMA
Weight; 10.09mg
Heat Rate; 10°C/min
Anneal Ternp, 90°C
Cool Rate from 150°C; 20°C/min
5.0+
55 T T T T T
70 80 0 100 110 120
Exa Up Temperature (°C) Universal Y2 7A TA
—
TTA
44
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Measuring Tg in Complex Samples with MDSC®

« Complex samples can have overlapping transitions which make it difficult to
detect or measure Tg

* MDSC experimental conditions which provide some cooling during
temperature modulation are recommended — adds sensitivity

* Use an underlying heating rate that is slow enough to provide 4 or more
modulation cycles over the transition of interest in order to improve separation
of overlapping events (resolution)

N
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DSC of Complex Polymer Blend
a
g
=
z
i o taroret The Datat
8 -1 '
Quenched Xenoy
13.44mg
2l DSC @ 10°C/min
o 5‘0 10‘0 1%0 260 25‘0
Bwlip Temperature (°C)
N
46
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MDSC® of Complex Polymer Blend

0.4 0.4
i’
/' \‘\E:v‘l-euelsmg //\
-/' --““--_....--_-‘-" \
05 —— = 0008
= —
< :
Quenched : £
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for MDSC: T 2
o 084 02==-08
m 0.318/60@2 2 i
o o 4
£ 2 =
PETTE Reversing T |
| i
4.0 — e — 04410
a e ——
o
Y
Xenoy 1102; GE Blend Melting Onset
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1.2 T T T 1.2
a a0 100 150 200
Exaln Temperature (°C)
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MDSC® of Weak Tg
-020 - 005
Epoxy coating from panel --2.21mg -- MDSC 2/60@?2
Mote: Both Signals at the
Sarne Sensitivity
Total
g
0254 Fooo £
g 5
3 5
g T
[ 3
= o
@ —_
= :
-0304 F-0.05 |
Reversing ‘ﬁﬁ“k%‘w\*
0.008540myy
-035 T T T T T T -0.10
20 40 60 80 100 120 140
Ealp Temperature (°C)
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Glass Transition of Lactose by MDSC®

] Heat Flow (Wig)

-0.02 0.020
0.04—
Total Heat Flow 0.005
008 7\/\/—\ @ 0o x
S Loom2
z z
ey Heal Liow Glass Transition 2 o
s % 0.004 =
0.14+ 2 o | 0025 3
MDSC Conditions: 116.05°C{H) E E
Amplitude = -0.5°C U&iO,DQ— &
Period = 60 seconds £ e
= "C/min. ,2_', - :
N2 Purge = 50mL/min. 0.040 :
-0.20 I 4
T . Evolution of Water » " Enthalpic Relaxation 0060090
Nonrev Heat Flow oo L .
e T T ‘ 0.070
40 60 80 100 120

Temperature ("C)
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MDSCP® of a Process Oil - Low Temperature Transitions in a
Process Oil
g 0.05 |
Cooling Experiment
) - » 'I:emperature T(°;)) » (@
50
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MDSCP® of a Process Oil - Low Temperature Transitions in a
Process QOil

0061 ’ Cooling Experiment ‘

0.05 -

004 -70.211°C

Reversing Heat Flow (Normalized) (Wig)

Glass Transition

0.03

0.02 -
17938 °C

-43.845°C

Nen-Reversing Heat Flow (Normalized) (Wig)

Total Heat Flow (Normalized) (Wig)

0.01
o -71.830°C
J 14.694 Jig
0.00 -13.582°C
i
-0.01 T T T T T T
-150 -125 -100 -75 -50 25 0 25
Temperature T (°C) (@
.
Is this a Tg or a Melt?
1.5
2.0 4
g
E
2
o
w
©
o
T
2.5+
-3.0 T T T T
100 120 140 160
Exo Up Temperature (°C)
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Now - Is this a Tg or a Melt?

Sample was annealed (aged) for 130 hours @ 135°C

.

Polycarbonate 7.92mg
H-C-H @ 10°C/min

Heat Flow (mW)
)
|

1st Heat
100 120 140 160
Exo Up Temperature (°C)
N
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MDSC of Aged Polycarbonate
-0.3 -0.1
0.4 0.04-0.2
-0.5 . -0.11-0.3
z s
= Polycarbonate 7.92mg £ B
E MDSC 1/60@3°C/min 3 H
3 06 T 02t-04 &
= £ 5
3 > T
T 2 3
<Zj ['4
074 -0.34-0.5
0s4 Sample was annealed (aged) 04t
for 130 hours @ 135°C
-0.9 T T T T -0.7
100 120 140 160
Exo Up Temperature (°C)
N
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Is it a Tg?

*If not sure if a transition is a Tg

*Run Heat-Cool-Heat (H-C-H)
« If transition is a Tg then it should be present on cooling curve and 2"¢ heat

*Run MDSC
+ A Tg will always show up in the Reversing Curve of a MDSC experiment
+ Use “conventional MDSC” template
+ Period: 60 seconds
+ Amplitude: 1°C
+ Rate: 2-3°C/min

=Run TMA or DMA
TR
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Melting and Crystallization Analysis
(Crystalline Structure)

TA

56
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Semi-Crystalline Polymers

5
o

*Crystalline Structure —
=Molecules arranged in well defined structures
=Consists of repeating units
=Polymers can have crystalline phases
+ Length of molecules prevents complete crystallization
Amorphous Region
*Semi-crystalline Polymers —
=Both amorphous & crystalline solid phases
=Examples are most common thermoplastics
+ Polyethylene, Polypropylene, etc

TR
57
Study of melting/crystallization using a DSC
*Melting is the process of converting solid, crystalline structure (lower energy) to a
liquid amorphous structure (higher energy).
*Melting:
=low energy state — high energy state; requires input of energy; Endothermic peak
*Crystallization — The process of converting either solid amorphous structure (cold
crystallization on heating) or liquid amorphous structure (cooling) to a more organized
solid crystalline structure
*Crystallization:
=high energy state — low energy state; releases energy; Exothermic peak
*We integrate these peaks, on a time basis to determine the Heat of Fusion (melting)
and Heat of crystallization
TR
58
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DSC Analysis of Polylactic Acid (PLA)

Heat Flow (Normalized) (W/g)

0.4
0.2 -
0.0 |

-0.2

e A

A modest cooling rate of 10C/min quenches
PLA into its' amorphous phase Crystallization

Glass Transition
Melting

Solid, rigid amorphous

-0.6 | . .
| Rubbery, amorphous Solid, crystalline
08 Liquid, amorphous
-1.0 T T T T T T T
0 25 50 75 100 125 150 175 200
Exo Up Temperature T (°C)

)
(TA ‘ TAINSTRUMENTS.COM
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Discovery DSC Microscope Accessory

RBeUE e

¥ rolylactic acd PLa |

Heat Flow {Normalized) @ (Wig)

:Flow (Normalized) Q (W/g)

DSC Analysis of Polylactic Acid (PLA)

05
00
054
84°C,
i After the Glass Transition

05

DSC Analysis of Polylactic Acid (PLA)

0o

05

109°C,
Crystallization Peak

Provides imaging and video capabilities
during a DSC measurement on the Discovery
DSC 2500, 250 and 25

)
(TA ‘ TAINSTRUMENTS.COM
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Melting of Indium - (Low molecular weight)

Extrapolated
Onset
Temperature o/ 156.60C
/ Indium
— 5.7mg
£ 0y Heat of 10°C/min
3 Fusion
§ -154
For pure, low molecular weight
materials (mw<500 g/mol) use
207 Extrapolated Onset as Melting
Temperature
157.01°C ‘
BT 155 160 165 ‘
Exo Up Temperature (°C) ‘
TR
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Melting of PET - (High molecular weight)
‘ For polymers, use Peak as Melting Temperature ‘
-1
2]
3]
s Heat of
£ Fusion 236.15°C
g “ \
5 PET
6.79mg
10°C/min
6 '
Peak Temperature %’
200 210 220 230 240 250 260 270
Exo Up Temperature (°C)
TR
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Comparison of Melting of Polymer and Metal

0

—

t } \
156.60°C
236.15°C i iqht: o
28.50J/ Peak width at half height: 8.15 °C
51 e 52.19J/g °
249.70°C

Peak width at half height: 0.32 °C

Heat Flow (mi\)

-20

157.01°C

T T T T T T
140 160 180 200 220 240 260 280
Temperature (°C)

TR

63

Definitions of some terms commonly used in crystallinity analysis

*Thermodynamic Melting Temperature — The temperature
where a crystal would melt if it had a perfect structure
(crystal with no defects)

*Metastable Crystals — Crystals that melt at lower
temperature due to small size (high surface area) and
poor quality (large number of defects)

*Crystal Perfection — The process of less perfect crystals
(metastable) melting at a temperature below their
thermodynamic melting point and then (re) crystallizing
into more perfect crystals that will melt again at a higher
temperature.

TR
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Crystal Structure Analysis

Crystal structure is typically broken down during the process of melting

*The formation of crystalline structure or crystallization can occur during heating
or cooling

=Cold crystallization occurs on heating when a solid amorphous material becomes
ordered

=Crystallization on cooling occurs when the liquid amorphous material solidifies into
an ordered solid

*Typically, the same amount of energy required to create the structure during

crystallization is also required to break down the crystal structure during
melting

N

TA
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Selecting Experimental Conditions for Crystallinity Studies

*During first heat the maximum temperature must be higher than the end of melting peak;

eventually an isothermal period must be introduced

=Too high temperature/time:
+ decomposition could occur
=Too low temperature/time:

+ possibly subsequent memory effect because of the fact that crystalline order is not
completely destroyed

*For non-crystallizable (amorphous) polymers the maximum temperature should be above Tg

(removal of relaxation effects, avoid decomposition)

= MDSC Test conditions:
+ Use “MDSC Heat-only” template
» Period: 60 seconds
+ (template calculates amplitude for you)
» Heating rate: 2-3°C/min
N
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Heat capacity baseline and Integration Limits

*True Heat Capacity Baseline — Often called the thermodynamic baseline, it is
the measured baseline (usually in heat flow rate units of m\W) with all
crystallization and melting removed.

=Assumes no interference from other latent heat such as polymerization, cure,
evaporation etc. over the crystallization/melting range.

+It is often difficult to select limits for integrating melting peaks
=Integration should occur between two points on the heat capacity baseline

=Heat capacity baselines for difficult samples can usually be determined by
MDSC® or by comparing experiments performed at different heating rates

N

TA
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Calculation of Initial Crystallinity

0.4

*Because crystalline structure can form as the
sample is heated, the actual crystallinity of the 02 (
sample is usually less than measured I

*Sample must be pure material, not copolymer or 0.0+
filled

*Must know enthalpy of melting for 100% crystalline
material (AHIit)

*You can use a standard AHlit for relative crystallinity

0.2

04

Heat Flow (Normalized) Q (W/g)

For standard samples:

% crystallinity = 100* AH,, / AH,;,

-0.6 -

-0.8

0 50 100 150 200 250
Exo Up Temperature T (°C)

TR

For samples with cold crystallization:

% crystallinity = 100* (AH,, - AH,)/ AH,;,

300

68
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PET Data from ATHAS

Poly(ethylene terephthalate) (PET)
Crystalline Calculated Data

B R e e T T

* Advanced THermal Analysis Lajjoratory *
) 1993 PRecommwended Data of x
* Thermodynemic  Properties of  Macromolecules *

L L T T P PPy

Name : Poly(ethylene terephthalate) Calculate g/mole from
File MName : PET .
molecular structure which
Structure @ o =)
o equals 192 g/mole for PET
(O0-C-CeH4-C-0O-CHZ-CHZ-)

< Crystalline » [}8
T index cp H - HO[C] ] HO[C] - G
(K) T [1/K.mal) (d/mal)  (J/K.mal) [(T/mal)
0.10 4 0.000 0.00 0.000 0.00
0.zo 4 0.000 0.00 0.000 0.00

TA
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ATHAS Summary Page for PET

AH;inkd/mol [———3

Poly(ethylene terephthalate) (PET

Summary
Ty acp Tm a SHGE  So Thetal Theta3 ¥s Cp
(3] - i 553 X o &8¢ 54 15 1.0-10
{a) 342 T7.8(4+1) - X 2z 586 44 p -1 1.0-550
PET 8 1= 10,43 8,57 337 30 30 30 8,29
+ Explanations ke

The data arc separated into

. OpE 1 and Caleulated -Crystalline
+ CpE 1 and Calculated - !

o Cp. HSG Crystalline

o Cp.H.5.G -Amorphous

o Cp Figure, H,8,G Figure These are picture fles and may need some time to load
o References

T w | 26.9k] | mol

x1000=140J/g
192g / mol

TTA

TA
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Quench-cooled PET - calculation of initial crystallinity

10
134.62°C
(74.71-53.39)
Quenched PET 100 x =15%
054 | 9:56mg o o o
10°C/min
g " 242.91°C
é 78.99°C()) 74.71Jig
8 o5
T 80.62°C 127.72°C
53.39J/g
104 | % crystallinity = 100* (AH,,, - AH.)/ AH};
256.24°C
o 50 100 150 200 250 300
Temperature (°C)
TR
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Change in Crystallinity While Heating
1.0
134.63°C 230. 06 c
0.5 60
B 00 T4
S 5
z =
- 5
§ TN
™ Heat Capacity Baseline
10 40
100x
1.5 T T T T T T T
-50 1] 50 100 150 200 250 300 350
Exo Up Temperature (°C)
TR
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MDSC for measuring Initial Crystallinity

A Vi 2
! \_ 5 \ |5 = MDSC ‘“Initial Crystallinity” is
_/[\\ THEY __,/ \ il always calculated from the sum
T B RS L SR R —= i o = of all crystallization exotherms
Totol j \ 3 3 and melting endotherms
% 105.?0**: 1.855479 mmzc% po B
- || S— I:E 1 ;-?;
EE B — \ [ soopcd B E = Integrate the Nonreversing
g "“‘*\\ f M signal from the start of
— ,l' ‘ I crystallization to the end of
-4 9 -4+ .
Initial Cays(a\}l;'mw = 14321448 =16 Jig \\ ‘[ b i — meltlng
sec. Penod \ L4
100218 — 1 149 ‘\ ]' = Integrate the Reversi-ng signal
& 140 \/ 1 from the start of melting to the
. . ) i . % end of melting
50 100 150 200 250 300
Exo Up Temperature (*C)
TR
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Impact of crystal perfection on the melting peak
*The shape of the melting peak is also affected by crystal perfection processes
that occur over the same temperature range as bulk melting.
=This often gives the appearance of two melting peaks rather than what actually is
an exothermic crystallization peak superimposed on an endothermic melting peak.
TR
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PET Melting after Cooling at Different Rates

-0.05
Samples Prepared at the
Indicated Coaling Rates
-0.10
B
é All Runs MWade at 2°Cimin. After
% Coaoling at the Rates Indicated 10°Crmin
e
©
@
T
5°Cfmin
-0.15
2°C/min
1°Cirmin
-0.20 T T T T T T T T T T
1 180 190 200 210 220 230 240 250 260 270 280
Temperature (°C)
TR
TA
MDSC: Thermal T iti in PLA
. ermal rransirions Iin
0.05
- 0.00
0.00
P t-005 2
2 s
: 3
E:. -0.05 i
[ ®
5 2
T >
= = Q
0.10 e
-0.10
r-0.15
-0.15 T T T
50 100 150 200
Exo Up Temperature (°C)
TR
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MDSC Applications: Thermal Transitions in PLA

5020 oot
| Enthalpic Recovery |
-0.025+ 0.00+0.00
= =
i S S
S -0.030-] Glass Transition = 0021001 =
g : H
3 b 2
3 % i
i T 3
3 > I
T -0.035- o -0.04-002 >
5 &
-0.040 - r-0.03
-0.045 T T T T -0.04
45 50 55 60 65 70
Exo Up Temperature (°C)
TTA
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. L] oepe .
MDSC Applications: Thermal Transitions in PLA
0.05 0.00
Cold
Crystallization
r-0.01
0.00 0.05
C -
(=2
c) E;' F002
s : 2
HEEYE o o
2 3 F003 >
5 @
m
-0.10 =0.05-
r-0.04
Reduction in Heat Capacity due to the
Crystallization
-0.15 T T T T T -0.05
70 80 920 100 110 120 130
Exo Up Temperature (°C) A
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MDSC Applications: Thermal Transitions in PLA

005 .00
Cold
Crystallization
0.00 - r-0.01
25 0.05-7
2 5
S 0051 2 Fo02
£ o 3
B L n
: 3 F
§ -0.10 3 oo %
5 &
=z
—1.5
-0.15+ r -0.04
Reduction in Heat Capacity due to the
Crystallization
-0.20 T T T -0.05
60 80 100 120 140
Exo Up Temperature (°C) e e
TR
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MDSC Applications: Thermal Transitions in PLA
0.05 0.05
5 H”H (”HHHHHH s
s N ‘ | I ] I %
3 -0.051 05---0.05 i
o
2010+ | Very Little Contribution to 10+--0.10
Melt Transition in the
Reversing Signal
-0.15 T T T T -0.15
100 120 140 160 180 200
Exo Up Temperature (°C) ~ 1A
80
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MDSC Applications: Polymer Transitions; PLA

*Based on the number
of modulations through
the transition, it is
reasonable to conclude
that our experiment is
valid.

Sometimes we see this
from highly crystalline
materials.

HLHTVTS

[, VA

§

TR
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MDSC Applications: Polymer Transitions; PET
0.10 0.00
Cold Crystal Perfection and Some
Crystallization Melting
0.05 0.15--0.05
IC] -
(=
S 000 S solon =
g 3 3
3 i ]
= 5 :
L T 3
£ 005 3 0051015 :>:
s @
=z
Glass Transition
-0.10 0.00-+-0.20
-0.15 T T T T 0.25
50 100 150 200 250 30‘
Exo Up Temperature (°C) A
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Thermosets

i TA
83
Thermosetting Polymers
A “thermoset”’ is a cross-linked polymer formed by an
irreversible exothermic chemical reaction
Thermosetting polymers react (cross-link) irreversibly. A+B
will give out heat (exothermic) when they cross-link (cure).
Wy T.('r‘f 254 () \{)\-—{ )‘_
R 3}& I*r" :
Al e ol S 4
T DA
A+B == C rEevd II»)\L
@ . g g8
4 - 4
o ’ TR
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Typical properties of crosslinking reactions

*Crosslinking reactions are generally -lIncrease in modulus that may be
exothermic. The reactions can be easily = accompanied by shrinkage.
monitored using a DSC.

*Heat of reaction - The reactions can thus be monitored
=Residual cure using a Thermo-mechanical Analyzer
=Glass transition (TMA)/Dynamic Mechanical Analyzer
~Heat capacity (DMA)/Rheometer.
=Viscosity
» Crosslinking reactions are generally “Modulus .
accompanied by a sharp change in the *Glass transition
material’s mechanical properties. =Dimension change (shrinkage)

These techniques give useful information about the impact of the polymerization
conditions on the end product’s thermo-mechanical properties.

TTA

TA
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DSC: General considerations for selecting optimum
experimental conditions
*Sample weight: 10-15 mg
*Pan types:
=Solids — Standard aluminum pan/lid
=Liquids — Hermetic aluminum pan/lid
*General protocol for studying thermosets:
=Determine decomposition temperature using TGA
=Heat-Cool-reheat at 10°C/min
=First Heat is used to measure Tg of starting material, heat of
reaction and presence of any reactive functional groups.
=Second Heat is used to measure the Tg of the fully cured sample
and any residual cure from the first heat
TR
86
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Comparison of First and Second Heats

-0.04

-0.08 | First 155.93°C
G
E 012 - Residual Cure
2
o
= -016 | Second Tg 102.64°C
S 20.38J/g
I

-0.20

| Tg moves up in temperature as curing continues |
'024 T T T T T
0 50 100 150 200 250 300
Temperature (°C)
TR

Epoxy Cured 48 Hours: Heat Cool Heat

4

1st Heat @ 10°C/min
Cool @ 10°C/min
2nd Heat @ 10°C/min

Heat Flow (mW)

5 Min Epoxy - 9.85mg
[ S Cured 2 nights @ RT

50 0 50 100 150 200
Temperature (°C)




Rev-Heat Flow Easily Shows Tg

0.2

MDSC: 1/60@2°C/min 04

0.2
* 0.2
0.0
02]

0.0

-0.2

Heat Flow (mW)
Nonrev Heat Flow (mW)
Rev Heat Flow (mW)

-0.4+ ~-0.2

40.61°C(H)
-0.4

0.1

o

75 Min Epoxy Cured 2 nights
6.4900 mg

50 0 50 100 150 200
Temperature (°C)

N
89
Percent Cure Calculation by DSC
*Need Heat of Reaction (Enthalpy) of unreacted material curing
=Typically run uncured material in DSC
*Run cured or partially cured sample in DSC
% Uncured = (AH Residual Cure / AH Full Cure) * 100
% Cure = 1 - (AH Residual Cure / AH Full Cure) * 100
N
90

45



Epoxy Cured Overnight at Room Temp - Standard DSC

9.17mg

20 Min Epoxy Cured Overnight at RT

Post-cure scan @ 10°C/min

Heat Flow (mW)

25.41°C(H)

100.27°C 63.38°C

30.64J/g
84.29 % cured

Exo Up

160 12’)0 260 2&0
Temperature (°C)

TR
91
Epoxy Cured Overnight at Room Temp - MDSC
-0.30 0.1
50.21°C
27.14J/g
86.08 % cured
-0.45
0.81-0.2
s -
— € S
060 g S
£ E H
z 34.10°C(H) L 05405 ©
T g o
E N 2
£ 075 g 3
é x
o 4845°C
80.04°C 29,7001 02108
0904 84.77 % cured
6.45mg 20 Min Epoxy
Cured Overnight at RT
MDSC 0.75/40@3
-1.05 T T T T -1.1
-50 0 50 100 150 200
Exo Up Temperature (°C) 3
TR
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Isothermal curing of a Thermosetting Material

Heat Flow (mW)

5 min-Epoxy
Isothermal @ 40°C]|

Temperature is too high
Missed most of the reaction

EoUp

Time (min)

Heat Flow (mW)

Temperature is better

Need to either go even lower in
temperature or work faster

5 min-Epoxy
Isothermal @ 25°C

Boup

& 5 & o 2 1 1
Time (min)

i

—)
TR
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(] (] . * L]
Curing reactions are kinetic in nature
6
172.86°C 1°C/min
5.792W /g 2°C/min
5°C/min
10°C/min
20°C/min
160.93°C
41 3.431WTg
5
s 149.93°C
ht 1.972W/g
3 27
k)
s 137.04°C
® 0.9506W /g
£ 128.29°C
0.5594W /g
0 ‘ e & : 1 : ==
122.26°C 141.85°C 162.53°C
323.9J/g 315.1J/g 320.5J/g
130.12°C 151.92°C
315.5J/g 320.0J/g
100 120 140 160 180 200 220 240
Temperature (°C) =
N
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Photopolymer Cure by PCA

Heat Flow (mW)

250

1.08min

200

150

100+

50+

\Cure of a Photopolymer by PCA\

1.01min
209.1J/g

Method Log:

1: Equilibrate at 35.00 °C

: Isothermal for 1.00 min
: Light: on @ 20mW/cm2
: Isothermal for 5.00 min
: Light: off

: Isothermal for 2.00 min
: End of method

~No b wN

T T
4 6

Time (min) (/T.\Q
95
Pharmaceuticals
1A
5 TA
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Thermal Events in Pharmaceuticals

ng

*Melting
=Purity

*Polymorphs

*General Recommendations
=Use TGA to determine pan type
=Use 1-5 mg samples (use 1mg for purity)
=[nitial H-C-H @ 10°C/min (1°C/min for purity)

=If polymorphs present, heat faster to inhibit polymorphic
transformations

TR
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DSC at 5°C/min for Drug Microspheres
o Itaoiat e pards
% 0.4
z
-06-
Microspheres/Drug
2.51mg (pinhole)
DSC at 5°C/min
i i 50 100 150 200
Bl Termperature (°C)
TR
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MDSC for Drug Microspheres

-0 =01
MDESC Total and Reversing
Heat Flow Signals
-0.2-4 =-0.2
Mote Lack of Melting Endatherm Crystallization of
in Rewersing Signal Friorto jumorphous Material
-0.3 Crystallization Feak in Total Signal F-0.3
ey =
g E
= 2
E 0.4 F.os Lo
= =
4 i)
2 =
2= i)
o
05— F-0.5
lass Transition with
Enthalpic Recovery
H Endotherm Due to Loss of
1.1 Microspheres/Drug 5, ”
6.52mg (pinhole) MG P S T
MDSC' o 159/30@2 Formed While Heating
-0.7 T T T -0.7
o 50 100 150 200
Exalls Temperature [*C)
TR
TA
Effect of Heating Rate on Polymorph
DSC at All Curwes Scaled Bazed on
1°C/min \q-\ F\\ Heating Rate and All approx. G509
5
st i l DSCiE1Cimin, =y
= = : =
g’ -1 = E P=-0.1 E
= = =
o o o
[T B w
= o DSC at ) o
£ £ 10°C/min £
2 1] p=-0.2
] T 0.3
140 150 160 170 180
Exaup

Temperature (°C)

100

50



Thermodynamic Melting (Not Heating Rate Dependent)

04 1°C/min
g et 0
Wy {f P
|
104
20°C/min
s O
E o0 E E
é Onset of melting shifts by 0.3C 2 é
E ‘ over heating rate range of 1- § E
30 - j‘ 20°C/min for sample that has a 1o
Phenacetin !\‘ true melt N
Hermetic Pan
40
Approx 1.5mg L 15
-50 T T T T T T T T T T T T T
120 125 130 135 140 145 150 155 160
Exo Up Temperature (°C)
TR
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Apparent Melting (Heating Rate Dependent)
Ciprofloxacin Hydrochloride Decomposes
50
A Onset differs by
w e almost 30°C | [°
and Toar | od
5°Cimin e
i % b

Heat Flow (mWV)
=

: B
——
‘r \\ ,,/' 20°C/min B
ke [T
307.38°C | S e
0 183.7/g b
T

~10 4
322.08°C
Hermetic Aluminum Pan
Approx 1.5mg Sample
3

-307 335.74°C

T T T T T T T T T T T T T -10

2 290 300 310 320 330 340 350 360
Exo Up

Temperature ("C)

Heat Flow (mW)
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Evaluating Material Compatibility Using DSC

= Active components of drugs are mixed with other materials called excipients that act as
bulking agents, improve long-term stability, or as processing lubricants

= Understand the Interaction of excipients with the active pharmaceutical ingredient (API) is
critical when developing a formulation

= The Discovery X3 DSC is a multi sample DSC that
allows running 3 samples simultaneously

= Increase in productivity, ability to run MDSC

= Compatibility studies of APl and excipients can be done
In one test under the same conditions

Discovery X3 DSC

Cra
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Detection of Apparent Melting by Chemical Interaction in the X3 DSC

0.05+
0.0+ = 0.0
0.00 =
5 v
z s
8 021 3 00502
w T
5 %
@ Lo}
T 5 T
/ N 0,10
50/50 Mixture of Acetylsalicylic acid Acetyisalicylic acid
Chemical interaction between o - s
these materials causes a loss 015
of crystalline structure at a Hermetic aluminum pans Magnesium stereate
much lower temperature 10 mg sample
1°C/min
06 : T v T ; v 06
40 60 80 100 120 140 160

Temperature (°C)

Heat Flow (Wi/g)
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Effect of Impurities on Melting

Effect of p-Aminobenzoic Acid Impurity Concentration on the Melting

Shape/Temperature of Phenacetin

;r*\\?’r’:m ==

99.3% Pure
/ 100% Pure

s V Melting of /<\ \ A
= > . 0,
= Eutectic Mixture 96.0% Pure v
[
-1 8 95.0% Pure %
= '.
k-] 1 I
3 \il
NBS 1514 \1 |
Thermal Analysis ‘\\‘
-2 Purity Set {
|
]
Approx. 1mg %
Crimped Al Pans !
2°C/min !
T T T T . T
110 115 120 125 130 135 140
B Up Temperature (°C)
TR
TA
[ ° °
Van't Hoff Purity Calculation
0.8 135.0
125.20°C
- 137.75°C
e < 3
\
N\
1.0 AN
\\
N\
1345
1.2+
&) 1.4+ 3
s ®
3 b1sao 2
£ 8
3 1.6 £
T =
Purity: 99.53mol %
Melting Point: 134.92°C (determined)
Depression: 0.25°C
1.8+ Delta H: 26.55kJ/mol (corrected) a
Correction: 9.381% =] r133.5
Molecular Weight: 179.2g/mol Op o
Cell Constant: 0.9770
Onset Slope: -10.14mW/°C
RMS Deviation: 0.01°C
204
Total Area / Partial Area
-2 0 2 4 6 8 10
22 f i | i t ] i 133.0
122 124 126 128 130 132 134 136 138
Exo Up Temperature (°C)
TR
TA

53



Remainder and Final Notes

« MDSCP®is a slow technique. Always start the analysis of a new material with standard DSC
and only use MDSC if you need:

= Improved sensitivity

= Better resolution

= Separation of overlapping transitions

= Most accurate measurement of polymer crystallinity

» DSC General Methods Recommendations:
= Run a Heat-Cool-Heat at 10-20 °C/min
= Use specific segments as needed, i.e. gas switch, abort, etc.

= Ensure that the starting temperature of the experiment is chosen
to encompass the entire transition (2 minutes of baseline)

TR
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For additional questions:
Email thermalsupport@tainstruments.com
* Please put Online Training Questions in the subject line

» To download this presentation:
https://www.tainstruments.com/online-training-course-
downloads/
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