N

Instruments

Woaters-

TRIOS Software and JSON Export:
Basic Interaction with the Dataframe in Python

Keywords: TRIOS, JSON, Python

ABSTRACT

This technical brief discusses how to interact with dataframe
information in Python® within the context of a thermal analysis data
file. It covers the contents of the data file, how to extract specific
details, and introduces basic plotting of that information. This note
is not a comprehensive guide to Python and its libraries; readers are
encouraged to refer to the official documentation for more details.

Note: The exported JSON file and the final Python script (in
Jupyter® code format) used in this technical brief can be
downloaded here.

INTRODUCTION

The TA Instruments™ TRIOS™ Software instrument control and
data analysis package offers numerous features for both routine and
in-depth analysis of scientific data. However, you may sometimes
need to generate uniform plot formats, overlay data from multiple
sources, or apply advanced functions not available within TRIOS.

TRIOS Software has always supported data export in various
formats, including plain text (ASCIl), Comma Separated Values
(CSV), and Excel™ workbooks. TRIOS Software version 5.8
introduced the ability to export data to a JavaScript™ Object
Notation (JSON) file. The import of this JSON file into Python
was discussed in a previous technical brief TB105. This note will
explore how to interact with the resulting dataframe.

THE PYTHON SCRIPT AND WORKING WITH THE DATAFRAME

In a previous technical brief, importing the JSON file and creating
the dataframe were discussed. When executing the Python script,
the interaction with the dataframe occurs in the background; you
typically see only the final results. However, it is often useful for
you to examine the structure or contents of the dataframe. The
Python code block below demonstrates how to import the JSON
file into the dataframe, this can be downloaded as Script 1.

ieat Capacity Heat Capacity

Hester iormalized) [

CellPurge

7 mL/min P

0012260 45980679 1113678

50018201 45980682 1113677 0003662 0850757 0001657 0.00000

s0.018281 45980685 1113678 0.00366:
1113677

1113677

At
197200835
197219340

197.237305

1017084

10

17008

TB106
1. # Import the required libraries
2. from tadatakit.classes import Experiment
3. import pandas as pd
4.
5. # Load the JSON experiment data
6. experiment = Experiment.from_json("files/PLA
Bar.json")
7.
8. # Get the dataframe of processed data with
9. # indexing for each step from the JSON file
10. step_name, pla_df =
experiment.get _dataframes_by step("processed")

This script creates five dataframes (indexed 0 to 4), each
representing a step in the measurement:

« pla_df[0]: Equilibrate 0.00 °C step

« pla_df[1]: Ramp 10.00 °C/min to 200.00 °C step
« pla_df[2]: Isothermal 2.0 min step

+ pla_df[3]: Ramp 10.00 °C/min to 0.00 °C step

+ pla_df[4]: Ramp 10.00 °C/min to 200.00 °C step

To view the dataframe for the first heating cycle you can use the
Python code line:

1. print(pla_df[1])

This displays a snapshot of the complete dataframe, showing the
signal labels and the first and last five rows of data as shown in
Figure 1.

Figure 1. Snapshot of the
complete dataframe

Flange Power.
Frocedue S0 tempersture Deivered /
c w

Heat Flow
FmW,

37012 107066666 -2496391 0310883

0.295; s9z041 2496818 0310887

199312424 39 104748550 2496438 0310839

108403073 199320514 D 103412302 2496436 0310889

108500567 199.3458 106750604 2496410 0310887

1TB106

https://s3.us-east-1.amazonaws.com/TAInstruments/Phil+Davies/JSON+Part+2.zip

It is also possible to extract a single row of data using an index
locator. The code below shows an example of this which will
extract the fifth row of data on first heat dataframe.

1. print(pla_df[1].iloc[4])

The result of executing this code is shown in Figure 2.

58.828446
1.734927

Cell Purge / mL/min
Heater Temp / °C

Reference Junction Temperature / °C 45.980869
Heat Capacity Polystyrene / 1/(g.°C) 1.113677
Heat Capacity (Normalized) / 1/(g.°C) a.e
1/temperature / 1/K 0.803662
Delta T / pv @.817896
Time / min ©.006667

Heat Capacity / 1/°C e.e
Step time / min

0.886667
-8.695212
ad3d51c9-248e-48b5-blbe-57552b%ccchl
8.717366
-2.844411
-8.885275
00820604 - 0000 - 0800-0000 - 98000BE00008

Delta Tzero / pv

Results Step Id

Heat Capacity Sapphire / 1/(g.°C)
Temperature / °C

Tzero Temperature / °C
Procedure Step Id

Flange Temperature / °C
Power Delivered / W

Heat Flow / mW

Heat Flow (Normalized) / W/g
Name: 4, dtype: object

Figure 2. Data content of the fifth row of the first heat dataframe

It is also possible to extract a single column of data using the code
below.

1. print(pla_df[1]["Heat Flow (Normalized) / W/g"])

As with the display of the full dataframe, only a snapshot of the first
and last five data points will be shown. This is shown in Figure 3.

11999
12800

12801 .31

12802 -8.31

12803 -8.3L

Name: Heat Flow (Normalized) / W/g, Length: 12884, dtype: float64

Figure 3. Snapshot display of the selected data column (Heat Flow
(Normalized) / W/g in this case)

Finally, it is also possible extract a single value from the dataframe
by combining both the column name and the row index as in the
following code line.

1. print(pla_df[1]["Heat Flow (Normalized) /
W/g"].iloc[4])

This example shows where the heat flow normalized value at the
fifth row of the first heat dataframe is displayed with the resultant
output in Figure 4.

8.8222863825665283

Figure 4. Resultant display from the Python code for the single value
extraction

DATA VISUALIZATION

The Matplotlib library is a comprehensive visualization library for
Python. Refer to the Matplotlib documentation [1] for more details.
A basic plot can be created by first importing the library. Then
the signals from the dataframe to be plotted can be defined, and
labels added to the axes. The code block for this is shown below:

. import matplotlib.pyplot as plt

1

2.

3. # Set the size of the figure
4. plt.figure(figsize=(10, 6))
5
6
7

. # Define the x and y signals
. plt.plot(pla_df[1][" 'Temperature / °C'],
pla_df[1]['Heat Flow (Normalized) / W/g'])
8.
9. # Label the x-axis
10. plt.xlabel("Temperature (°C)")
11.
12. # Label the y-axis
13. plt.ylabel("Heat Flow (Normalized) (W/g)")
14.
15. # Display the plot
16. plt.show()

The plot generated is shown in Figure 5.

0.50
0.25
0.00
-0.25
-0.50
-0.75+

-1.00 4

Heat Flow (Normalized) (W/Q)

-1.254

T T T

0 25 50 75 100 125 150 175 200
Temperature (°C)

Figure 5. Basic plot of the first heat dataframe showing the heat flow
against temperature

CONCLUSIONS

This technical brief highlights the basic steps required to interact
with the dataframe generated from the JSON file. The basic steps
to producing a plot are also highlighted.

REFERENCES
1. Matplotlib — Visualization with Python

ACKNOWLEDGMENTS

This technical brief was written by Philip Davies, Principal
Applications Scientist, TA Instruments.

For more information or to request a product quote, please visit
www.tainstruments.com to locate your local sales office information.

Python is a registered mark of Python Software Foundation.
Jupyter is a trademark of LF Charities, of which Project Jupyter
is a part. Excel is a trademark of Microsoft Corporation, and
JavaScript is a trademark of Oracle Corporation. Matplotlib is a
trademark of NumFOCUS, Inc. TRIOS and TA Instruments are
trademarks of Waters Technologies Corporation.

© 2025 TA Instruments/Waters Corporation

2TB106

https://matplotlib.org/
www.tainstruments.com

	_Hlk82086440

