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ABSTRACT

This technical brief discusses how to interact with dataframe
information in Python® within the context of a thermal analysis data
file. It covers the contents of the data file, how to extract specific
details, and introduces basic plotting of that information. This note
is not a comprehensive guide to Python and its libraries; readers are
encouraged to refer to the official documentation for more details.

Note: The exported JSON file and the final Python script (in
Jupyter® code format) used in this technical brief can be
downloaded here.

INTRODUCTION

The TA Instruments™ TRIOS™ Software instrument control and
data analysis package offers numerous features for both routine and
in-depth analysis of scientific data. However, you may sometimes
need to generate uniform plot formats, overlay data from multiple
sources, or apply advanced functions not available within TRIOS.

TRIOS Software has always supported data export in various
formats, including plain text (ASCIl), Comma Separated Values
(CSV), and Excel™ workbooks. TRIOS Software version 5.8
introduced the ability to export data to a JavaScript™ Object
Notation (JSON) file. The import of this JSON file into Python
was discussed in a previous technical brief TB105. This note will
explore how to interact with the resulting dataframe.

THE PYTHON SCRIPT AND WORKING WITH THE DATAFRAME

In a previous technical brief, importing the JSON file and creating
the dataframe were discussed. When executing the Python script,
the interaction with the dataframe occurs in the background; you
typically see only the final results. However, it is often useful for
you to examine the structure or contents of the dataframe. The
Python code block below demonstrates how to import the JSON
file into the dataframe, this can be downloaded as Script 1.
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1. # Import the required libraries
2. from tadatakit.classes import Experiment
3. import pandas as pd
4.
5. # Load the JSON experiment data
6. experiment = Experiment.from_json("files/PLA
Bar.json")
7.
8. # Get the dataframe of processed data with
9. # indexing for each step from the JSON file
10. step_name, pla_df =
experiment.get _dataframes_by step("processed")

This script creates five dataframes (indexed 0 to 4), each
representing a step in the measurement:

«  pla_df[0]: Equilibrate 0.00 °C step

«  pla_df[1]: Ramp 10.00 °C/min to 200.00 °C step
«  pla_df[2]: Isothermal 2.0 min step

+  pla_df[3]: Ramp 10.00 °C/min to 0.00 °C step

+  pla_df[4]: Ramp 10.00 °C/min to 200.00 °C step

To view the dataframe for the first heating cycle you can use the
Python code line:

1. print(pla_df[1])

This displays a snapshot of the complete dataframe, showing the
signal labels and the first and last five rows of data as shown in
Figure 1.

Figure 1. Snapshot of the
complete dataframe
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https://s3.us-east-1.amazonaws.com/TAInstruments/Phil+Davies/JSON+Part+2.zip

It is also possible to extract a single row of data using an index
locator. The code below shows an example of this which will
extract the fifth row of data on first heat dataframe.

1. print(pla_df[1].iloc[4])

The result of executing this code is shown in Figure 2.
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Figure 2. Data content of the fifth row of the first heat dataframe

It is also possible to extract a single column of data using the code
below.

1. print(pla_df[1]["Heat Flow (Normalized) / W/g"])

As with the display of the full dataframe, only a snapshot of the first
and last five data points will be shown. This is shown in Figure 3.
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Name: Heat Flow (Normalized) / W/g, Length: 12884, dtype: float64

Figure 3. Snapshot display of the selected data column (Heat Flow
(Normalized) / W/g in this case)

Finally, it is also possible extract a single value from the dataframe
by combining both the column name and the row index as in the
following code line.

1. print(pla_df[1]["Heat Flow (Normalized) /
W/g"].iloc[4])

This example shows where the heat flow normalized value at the
fifth row of the first heat dataframe is displayed with the resultant
output in Figure 4.
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Figure 4. Resultant display from the Python code for the single value
extraction

DATA VISUALIZATION

The Matplotlib library is a comprehensive visualization library for
Python. Refer to the Matplotlib documentation [1] for more details.
A basic plot can be created by first importing the library. Then
the signals from the dataframe to be plotted can be defined, and
labels added to the axes. The code block for this is shown below:

. import matplotlib.pyplot as plt

1

2.

3. # Set the size of the figure
4. plt.figure(figsize=(10, 6))
5
6
7

. # Define the x and y signals
. plt.plot(pla_df[1][ " 'Temperature / °C'],
pla_df[1]['Heat Flow (Normalized) / W/g'])
8.
9. # Label the x-axis
10. plt.xlabel("Temperature (°C)")
11.
12. # Label the y-axis
13. plt.ylabel("Heat Flow (Normalized) (W/g)")
14.
15. # Display the plot
16. plt.show()

The plot generated is shown in Figure 5.
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Figure 5. Basic plot of the first heat dataframe showing the heat flow
against temperature

CONCLUSIONS

This technical brief highlights the basic steps required to interact
with the dataframe generated from the JSON file. The basic steps
to producing a plot are also highlighted.
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