ABSTRACT

Coal bed methane is a promising alternative to conventional gas. The ECBM technology combines improved methane recovery with underground storage of CO₂. This process can be studied by gravimetric measurements of adsorption isotherms using the IsoSORP® system with magnetic suspension balance. Accurate gas adsorption data are required for planning ECBM projects.

INTRODUCTION

As a result of increasing energy prices, the investigation of unconventional sources for oil and gas is of key economic importance. Large resources of natural gas are present as coal bed methane (CBM) in coal seams. Enhanced coal bed methane recovery (ECBM) is a technique that has been developed to use the injection of carbon dioxide to improve methane recovery from coal seams [1].

Besides improved natural gas recovery, ECBM offers another advantage: CO₂ from CCS (carbon capture and storage) processes is safely stored underground and is not emitted in the atmosphere [2].

However, the displacement of methane by CO₂ is a very complex process: gases are not only adsorbed onto the coal surface but absorbed in the coal matrix as well, which causes the coal sample to swell. As a consequence, the development of the ECBM technology requires careful studies with individual coal samples under realistic conditions [3]. This application note explains the use of TA Instruments IsoSORP SA® systems to study the ECBM process by gravimetric measurements.

EXPERIMENTAL

The IsoSORP SA® system by TA Instruments uses the magnetic suspension balance (MSB) for the gravimetric determination of adsorption isotherms.

A gas dosing system is used to supply pure or mixed gases at the required experimental conditions. Coal bed methane is present in coal seams at pressures between 30 and 300 bar and temperatures between 30 and 100 °C. The laboratory scale measurements have to cover these pressure and temperature ranges. Creating a defined gas atmosphere with CO₂ at elevated pressures is not a trivial task: CO₂ needs to be compressed from cylinder pressure (60 bar) by means of a syringe pump [4] and the complete dosing system including all valves and tubings needs to be heated to avoid condensation. Figure 1 shows a schematic of the complete IsoSORP SA® system.

RESULTS

ECBM studies were performed on coal samples from the Sulcis coal province in southern Sardinia. The Adsorption isotherms of pure CO₂ at 45° and 60 °C are shown in Figure 2: Adsorption for CO₂ is higher than for methane which is an important precondition for ECBM [5].

The next step is to measure the adsorption of mixtures of CO₂ and methane. In this case, the magnetic suspension balance is used to measure the total adsorption isotherm gravimetrically.

Based on these values, the adsorption data for the individual components can be gained by GC analysis of the remaining
non-adsorbed mixture in the gas phase. Samples for GC analysis can be taken after depressurization, the expanded gas flow is directed through a 6-port gas sampling valve. Analysis by MS is another alternative.

The data gained from these experiments (Figure 3) show that more CO$_2$ than methane is adsorbed in the coal even when CO$_2$ is the minor component in the mixed gas phase [6]. This confirms that CH$_4$ can be removed from coal seam deposits by CO$_2$ injection.

In order to generate gas mixtures with exactly defined composition, TA Instruments has developed MIX-modules as additional option: MIX instruments include storage tanks with calibrated volumes, a gas circulating pump and a gas sampling volume with sampling valve for analysis (Figure 4) [7].

CONCLUSION

Coal bed methane (CBM) is a valuable future alternative to conventional natural gas. ECBM, the technology to use carbon dioxide injection for improved natural gas recovery, offers the additional advantage of long term CO$_2$ storage.

It could be shown that TA's IsoSORP® instruments can provide valuable data on gas storage capacity and the dynamics of methane replacement by CO$_2$ for the planning and design of ECBM projects.

REFERENCES

4. Supercritical Fluid Applications in Manufacturing and Materials Production, Teledyne Isco, Syringe Pump Application Note AN1
5. S. Ottiger, R. Pini, G. Storti, M. Mazzotti, R. Bencini, F. Quattrocchi, G. Sardu and G. Deriu: Adsorption of Pure Carbon Dioxide and Methane on Dry Coal from the Sulcis Coal Province (SW Sardinia, Italy); Environmental Progress, Vol. 25 (2006), 355-364
7. FlexiDOSE Series Gas & Vapor Dosing Systems, Rubotherm 2013

ACKNOWLEDGEMENTS

Frieder Dreisbach holds a doctoral degree in mechanical engineering thermodynamics and is product manager at TA Instruments in Bochum, Germany.

Thomas Paschke holds a doctoral degree in analytical chemistry and is an application support specialist at TA Instruments in Bochum, Germany.

For more information or to place an order, go to http://www.tainstruments.com/ to locate your local sales office information.