
Performing an energy balance on a viscoelastic material
undergoing shear can be far from straightforward, a point
which is not always recognized in the rheological literature. It
is difficult to recommend a text where the matter is dealt with
clearly and fully. The most complete analysis is that of
Tschoegl [1], from which the following is mainly taken.

During a rheological experiment, a body is supplied with
mechanical energy. A full energy balance would consider the
resulting in changes in kinetic, surface, potential, thermal and
all other forms of energy within the sample. But rheology is
concerned only with the deformation and rate of deformation
of materials, and the contributions from most of these other
forms of energy are considered to be negligible. In other
words the sample is considered to have constant volume and
surface area. The change in kinetic energy arising from its
acceleration from rest is ignored, and it is considered to be in
constant thermal equilibrium with its surroundings. The
heating effect of the thermal energy generated is also
ignored.

In these circumstances it is only necessary to consider the
energy stored elastically, as potential energy, or dissipated
thermally. In the limiting cases of solids and liquids the
analysis is not difficult. If the energy supplied to the material
E(t) is considered as a function of time, then for a liquid, the
energy dissipated per unit time, per unit volume, E

d
(t), is

given by:

(1)

where is σ the shear stress and γ is the shear strain.  Since
the viscosity, η, is defined as σ/γ, where γ = dγ/dt, this
expression could equally well be been written:
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For liquids the energy stored, Es(t), is zero.

For solids the energy dissipated is zero, and the energy
stored per unit volume is given by:
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For viscoelastic materials part of the mechanical energy is
stored and part is dissipated, by definition. The energy
dissipated under steady state conditions is given by
equations 1 to 3, the stored component is obtained from the
transient response, i.e. the growth in shear rate to steady
state, or its decay after removal of the stress. For low
stresses, where the condition of linear viscoelasticity holds,
the analysis is relatively straightforward, but in practice at
higher stresses it is difficult to separate the elastic (stored
energy) response from that due to thixotropic and other time
dependent effects.

The analysis of the energy stored and dissipated during
oscillation is more complicated than is sometimes recognized.
The principle difficulty is that a liquid will continue to
dissipate energy continuously during oscillation, but the
total energy stored by a solid during a cycle is zero. In the
case of the solid, there are two points in the cycle at which
the strain is zero, at which points the stored potential energy
is also zero. Integrating over the complete cycle, or even half
cycle, would not be useful.

The first thought on how to overcome this might be to
consider the energy stored at the point of maximum strain, in
other words integrate over a quarter cycle, and this is what is
sometimes done. But it turns out that this type of analysis is
flawed, because the various mechanisms for storing energy
do not act coherently. A better way of proceeding is to
consider the average amount of energy stored during a cycle.
It is possible then to make a comparison with the total energy
dissipated per cycle. This is the approach taken by Tschoegl.

After much analysis, it is found that:
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Equations 5 and 6 can be checked for liquids and solids for
sinusoidal oscillation:
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For a liquid, combining with equation 2 gives:
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The energy dissipated per cycle is then:
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but sin 4π = 0, and for liquids η = G″ / ω,

so:
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For solids, combining equations 4 and 8 gives:
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The total energy stored in a quarter cycle is then:
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which, since sin π = 0,

=
*γ π

ω
�
�

�
(19)

The average energy stored over a quarter cycle, which is
equal to the average energy stored over a full cycle, is then:
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