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of the scattered light of an incident light 

beam interacting with the material is meas-

ured. From the intensity pattern of the scat-

tered light, changes of structure elements 

with a characteristic length scale in the or-

der of the wavelength of light are observed. 

Simultaneous SALS and rheological 

measurements on emulsions, suspension or 

similar structured systems provide struc-

tural information as a function of the ap-

plied shear rate or stress, important to inter-

pret rheological flow phenomena such as 

shear thinning, shear thickening, shear 

banding, yield stress, etc.. 

PROPERTIES OF LIGHT 

To explain the behavior of light in a scat-

tering experiment, light is represented by an 
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INTRODUCTION 

When light travels through material, inter-

actions with the electrons of the atoms or 

molecules change the properties of light. 

These changes are measured in an optical 

experiment. The results provide insight into 

the material’s microstructure in terms of 

size, shape and orientation. When optical 

measurements are performed simultane-

ously with rheological experiments, altera-

tions of the material’s structure can be 

monitored and information to explain and 

better understand the rheology of flowing 

systems is obtained. 

SALS is one method to probe the internal 

structure of materials. In a SALS experi-

ment  the spatial distribution of the intensity 

Figure 1: Representation of the electrical field E propagating in space   
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electromagnetic wave, propagating in the z-

direction through free space at the speed of 

light. An electromagnetic wave is a trans-

verse wave with an electrical field E char-

acterized by two components in x and y di-

rection, orthogonal to the direction of travel 

(Figure 1). The oscillation direction of the 

electrical field is referred to as polarization 

direction. 

Background and definitions 

The electrical field of the light E propa-

gating in positive z direction is represented 

in complex notation (see appendix): 

  (1) 

The components, Ex and Ey in x and y di-

rection also describe a sinusoidal function 

according to: 

  (2) 

Introducing the refractive index n, which is 

defined as the ratio of propagation speed of 

light in the material and in vacuum, pro-

vides: 

 (3) 

The polarization of light is defined by the 

components Ex and Ey. Since the two com-

ponents may have a different phase δx and δy;; 
expression (3) can be formulated as: 

(4) 

When δx=δy, the light is linearly polarized. 
The oscillation direction of E is the direc-

tion of polarization. When the phase of the 

components x and y changes differently 

when light travels through a material, the 

material is birefringent, when the ratio of 

the magnitudes |Ex|, |Ey| changes, the mate-

rial is dichroic. 

Intensity of a light wave 

Energy and momentum are transported by 

a wave. The energy for a transverse wave is 
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perpendicular to the propagation direction. 

For an elastic wave the sum of potential and 

kinetic energy is constant, no energy is dis-

sipated and the change with time of the 

electric field vector E is proportional to the 

angular frequency ω and amplitude Eo. 

    (5) 

When dE/dt is maximum, all energy exists 

as kinetic energy is: 

   (6) 

The energy propagates with the speed of 

light c in the direction z. The measured in-

tensity I is: 

 (7) 

The intensity is proportional to the square 

of the amplitude of the electric vector E. 

Spherical waves such as light propagate 

from the center in all directions equally; the 

intensity is distributed with increasing ra-

dius r over an increasing sphere surface – 

thus is proportional to 1/r2. Since I~E2, the 

amplitude E0 is inversely proportional to the 

distance r. 

For a spherically propagating electric 

field, the wave equation reduces to: 

  (8) 

Interference and scattering 

Coherent light consists of waves with a 

defined phase over a given distance 

(coherence length ~ 1m) and time, typically 

light originating from the same source.(1)  

When two coherent light waves meet in 

space, the magnitudes of the electric field 

vectors add up. When the maxima 

superpose, the amplitude doubles. The 

measured intensity, which is the square of 
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the magnitude increases by a factor 4. This 

is referred to as constructive interference. 

When maximum and minimum overlay in 

space, the amplitude i.e. intensity vanishes. 

This is destructive interference. Depending 

on the position in space, constructive and 

destructive interference alternate and the 

projection onto a screen shows an 

interference pattern with dark and white 

lines. Colors of the rainbow are visible 

because various wavelengths of the white 

light are filtered out as a result of 

interference. Light reflected from the top 

and bottom of a thin film also generates a 

typical line pattern as a result of 

interference. 

Consider two coherent light sources with a 

distance d apart. Two coherent light sources 

can be obtained by orientating two mirrors 

in relation to a spot light and create two vir-

tual light sources at the focal points with the 

distance d apart (Figure 2) (1).  

According to the Huygens principle, every 

point on the wave front is at the origin of a 

new elementary wave. The two focal points 

are the radiation center of two new coherent 

waves propagating in radial direction. The 

waves overlap and show constructive or 

destructive interference depending on the 

location in space. The light projected on a 

screen at a distance D from the focal points 

shows a pattern of dark and bright lines 

(Figure 2a). Let P be the observation point 

on the screen at an angle ϕ and A and B the 
origin of the interfering waves. The light 

beam traveling along the path BP has a path 

difference in reference to the beam travel-

ing through point A (Figure 3c). When the 

intensity at the observation point is maxi-

mum (P”) (constructive interference), the 

path difference (BP-AP) must be equal to a 

multiple of the wavelength. If the path dif-

ference B equals half the wavelength, the 

two light beams are 180 degrees out of 

phase (P’). The amplitudes add up and the 

intensity at the observation point P’ cancels 

out. 

All points with equal intensity can be 

found on a hyperbolic curve with (PA-PB)

=nλ; n=0, ±1, ±2, ±3,.. (Figure 2b) The 
same phenomenon is observed when ana-

lyzing the light scattered by crystals. Sir 

William Henry Bragg and son Sir William 

Laurence discovered the relationship be-

tween diffraction angle and crystal (Lattice) 

Figure 2: Interference of two coherent light beams 

a)                                                  b)                                        c) 
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structure. They received the Nobel price in 

1915 in recognition for the investigation of 

crystal structures by means of X-rays(9). 

When D (distance to screen) >>>d (distance 

of scattering points), the observation points 

are far away from the scattering centers and 

the hyperbols can be approximated by as-

ymptotes. For the triangle ABQ in figure 

2c, the conditions for interference can be 

derived as: 

    (9) 

Constructive interference occurs when 

n=1, ±2, ±3… and destructive interference 

when n=±1/2, ±3/2,…. The Bragg diffrac-

tion law relates the path difference to the 

object size. Diffraction of light can be used 

to analyze the structure in materials when 

the size of the structural objects is in the 

order of the magnitude of the wavelength of 

the light. However the diffraction pattern 

does not directly relate to the characteristic 

dimensions of an object – but provides the 

“number of wavelength that fit between 

scattering points of the object”(10). As such 

the scattering pattern is a representation of 

the inverse image of the real space. When 

micro-structures in flowing systems are ori-

ented, SALS provides information about 

size and shape of these objects. If these 

structures have the same size and are nicely 

spaced, interference patterns are visible. If 

the objects have different size, the typical 

interference patterns disappear and the scat-

tered light produces an 

irregular di f fract ion 

(scattering) pattern. 

SMALL ANGLE LIGHT 

SCATTERING THEORY 

When light intercepts an 

obstacle like a particle, 

molecule, etc. it will emit 

a scattered wave. Coher-

ent scattering occurs when 

the secondary wave oscil-

lates in phase with the pri-

mary (incident) wave. The 

sind nϕ λ=

measurement of the amplitude & polariza-

tion properties of the scattered light at vari-

ous angles relative to the incident light 

beam provides structural information about 

the material. 

In a SALS experiment the light intensity 

and not the amplitude of the electric field 

vector is measured. The intensity of a wave 

is proportional to the square of the ampli-

tude |E|2. 

The scattered intensity at the screen is 

proportional to the incident intensity and 

scales with the square of the distance from 

the scattering center.(2 page 12) according to: 

,   (10) 

F(θ,φ) is a dimensionless function and de-
pends on the orientation of the scattering 

object with respect to the incident wave and 

its polarization state. 

Rayleigh scattering (5)  

As long as scattering objects in a medium 

are smaller than λ/20, the scattering can be 
approximated by dipole scattering 

(Rayleigh scattering). The electromagnetic 

interactions of the light with matter displace 

the electrons of a molecule in reference to 

the nucleus and produce an oscillating di-

pole which emits a new light wave, the sec-

ondary wave.  The dipole P is related to the 

electromagnetic field E according to: 

2 2
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s

I F
I

k r
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Figure 3: Dipole scattering of linear polarized light 
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    (11) 

with α the polarizability of the molecules. 
The emitted energy of an oscillating dipole 

Is is proportional to the square of the aver-

aged second derivative of the dipole mo-

ment(5) (Theory of an oscillating dipole); 

   (12) 

c is the speed of light. The intensity of the 

incident light Ii is proportional to the square 

of the amplitude Eo
(2 page 64). 

    (3) 

With 

   (4) 

the intensity of the emitted light is: 

   (5) 

Inserting equation (13) and replacing c/f 

with the wave length, following expression 

for the scattered light intensity is obtained: 

   (6) 

The intensity of the scattered wave is pro-

portional to the intensity of the incident 

wave and the 4th of the power of the wave 

length. 

Theoretically the intensity Is could be 

measured from the extinction of the inci-

dent light in direction of propagation. How-

ever the extinction is too small, therefore 

P Eα=
r r

2
2

3 2

2

3
s

d P
I

c dt
=

r

2

8
i o

c
I E

π
=

cos(2 )oE E ftπ=
r r

4 4 2 2

3

2
8

3
s o

c
I f E

c
π α=

4 2

0

8

3
sI I kπ α=

the scattered light has to be measured di-

rectly. Since light scatters in all directions, 

the intensity at the surface of a sphere 

around the scattering center needs to be 

measured. 

When the incident light is linearly polar-

ized with the polarization direction in y di-

rection, the induced dipole at the scattering 

origin oscillates in the same plane and radi-

ates light waves in all directions, perpen-

dicular to the oscillation direction with an 

amplitude depending on the polarizability α 
(Figure 3). 

Figure 3 shows two examples of scattered 

waves in the yz plane at a distance r from 

the scattering center. With φ, the angle be-
tween the oscillation direction of the inci-

dent and the scattered light, the magnitude 

of the electrical vectors of the scattered 

light can be expressed as: 

   (17) 

φi refers to the angle of the scattered wave i, 
φo to the scattered wave in propagation di-
rection of the incident wave. With the inten-

sity being the square of the amplitude of the 

electrical vector, the expression for the in-

tensity can be formulated : 

   (18) 

The intensity is perpendicular to the direc-

tion of oscillation i.e. the polarization direc-

tion. The dashed circles in figure 3 repre-

sent trajectories on the sphere surface with 

constant intensity 

The total scattered intensity is the inten-

sity of the scattered light in all directions. 

cosi o iE Eφ φ φ=
r r

2cosi o iI Iφ φ φ=

Figure 4: a) Dipole scattering of vertical polarized light   b) ..of horizontal polarized light 
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Integration of the intensity over all surface 

elements on the sphere surface provides the 

total surface intensity: 

    (19) 

Because of the polarization properties of 

light, three states for the polarization of the 

incident light are possible, vertical, horizon-

tal and not polarized. 

Since the intensity measurements on the 

SALS instruments are made in the xy plane, 

the angle φ is replaced with the observation 
or scattering angle θ. 

For vertical polarized incident light, the 

electrical field oscillates in the direction y 

(Figure 4). For all angles θ in the xz plane, 
the angle φ in the zy plane is 0o. That means 
cosφ=1 and Iθ,v=Iφo,v . The scattering inten-
sity for all angles in the xz plane is the 

same. (v refers to vertical polarized light) 

For horizontal polarized light, the electric 

field vector oscillates in the direction of the 

x axes. The angle θ in the xz plane is equal 
to the angle φ and cosθ = cosφ. The inten-
sity for all angles θ in the x-z plane is 
Iq,h=Ifo,h cos

2θ. (h refers to horizontal polar-
ized light) 

For unpolarized light, the intensities in 

vertical and horizontal direction add up and 

the intensity for any angle θ is: 

28

3
s oI r Iφπ=

   (20) 

Note that for θ = π/2, the scattered inten-
sity for horizontal polarized light is zero 

(cos(90o)=0). Therefore vertical polarized 

light is typically used in SALS experiments. 

Figure 5 shows the intensity of  vertical and 

horizontal polarized light in all directions. 

The intensity for vertical polarized light at a 

fixed angle f is constant in all directions as 

represented by the dashed circle in figure 5. 

Constant intensity for horizontal polarized 

light at all angles is the surface of a spindle 

torus with the scattering dipole at the cen-

ter. 

Combination of the equations (16), (19), 

and (20) leads to the equation for the scat-

tered intensity for any angle θ as a function 
of the incident light intensity Ii 

.  (21) 

The angular distribution of Rayleigh scat-

tering of non-polarized light is governed by 

the term (1+cos2(θ)) and is symmetric in the 
plane normal to the incident direction of 

light (plane of the 2D detector in a SALS 

experiment). Maximum scattering occurs 

for θ=0, minimum for π/2. 

Since the molecules are closely packed, 

dipole scattering dominates and phase dif-

ferences between light waves emitted 

from the same molecule are small and 

negligible. (4) 

Rayleigh Debye scattering 

When the objects become comparable 

or larger than the wave length (a>>

λ/20), light scattering from elements 
internal to the object occurs and the 

phase difference between the emitted 

light waves is not negligible anymore. 

Assuming the refractive index of the 

solvent and the object is approximately 

the same, only contributions to the 

21 cos

2o
I Iθ φ

θ+
=

22 4

2
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2
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k
I I

r
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Figure 5: Intensity for Rayleigh scattering of vertical  and hori-
zontal polarized light. 
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scattering objects must be accounted for. As 

the scattering angle θ deviates from 0o, the 
phase difference increases and destructive 

interference occurs (Figure 6a). No phase 

difference nor destructive interference is 

obtained for θ = 0o. As long as the object 
dimensions are not exceeding λ/2, the scat-
tering intensity decreases smoothly with 

increasing scattering angle. (Figure 6b) 

For larger particles, the intensity distribu-

tion shows maxima and minima, related to 

the phase difference i.e. size of the object. 

The difference in phase between the inci-

dent and the scattered wave vectors is de-

scribed by the scattering vector (3) 

.    (22) 

For the process where light is scattered by 

2 elements on the object, the elements sepa-

= i sq k k−
r rr

rated by the vector x, the phase difference δ 
between the scattered light in direction 

ks=kns and the incident light ki=kni is given 

as (Figure 7): 

 (23) 

The magnitude of the scattering vector is 

(see appendix 2) 

 (24) 

The phase difference of the scattered light 

from the object in any direction is refer-

enced to a common origin and the complex 

amplitudes are summed up in the phase fac-

tor eiδ . The scattering of the entire object is 

the integral of the phase factor over the ob-

ject volume according to (3): 

 

2 2= ( )s ikl kl k k x q xδ − = − ⋅ = ⋅
r r r r r

( ) ( )4 sin
2

2 sin
2

q k

θπ
θ

λ
= =

r

Figure 6 a) Scattering showing constructive and destructive interference λ>(Pj-Pi)>λ/2                  

b) intensity as a function of the scattering angle θ if distance (Pj-Pi) < λ/2 

Figure 7: Rayleigh-Debye scattering 
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.   (25) 

R(θ,φ) is the Rayleigh form factor. The 
amplitude of the scattered wave is the scat-

tered amplitude of the pure Rayleigh scat-

tering amplitude multiplied with the form 

factor R(θ) which is independent of polari-
zation. The intensity of the scattered light is 

found by multiplying the intensity of 

Rayleigh scattering with |R(θ)|2. For inci-
dent unpolarized light, the scattered inten-

sity is given as: 

 (26) 

Interference effects of large particles are 

taken into account through the form func-

tion R(θ). For the scattering angle θ=0 (in 
direction of propagation), the form factor R

(θ)=1. According to Debye, the form factor 
can be expanded in a series according to(5): 

(27) 

For small q, only the first two terms are 

important and R(θ) only depends on a1. 

The form factor can be determined for 

many geometries. For example, the form 

factor for spheres with radius a can be ex-

pressed as a function of q: 

1
( , ) iqx

V
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V

θ φ = ∫
r

242
2

2

(1 cos )
( )

2
s i

k
I R I

r

αθ
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1 2( ) 1 sin sin ...
2 2

R a aθ θθ = − +

(28) 

The form factor R2 as a function of the 

dimensionless scattering vector qa for 

monodisperse spheres shows a spherical 

symmetric scattering pattern with a central 

point, circumscribed by rings with intensity 

minima located at the roots of R(θ)=0. 
From the location of the first minimum, the 

size of the scattered sphere can be obtained. 

Polydispersity of the beads removes the ap-

pearance of the minimum. 

NB: Scattering of monodisperse beads (3 

microns) is used to calibrate the pixels of 

the camera array for the scattering angle i.e. 

q value. 

 

SALS OPTION 

Design 

The TA-SALS module for the AR series 

of rheometers is a compact, fully integrated 

option consisting of a lower Smart SwapTm 

assembly with the laser incorporated into a 

Peltier plate and an upper optical analysis 

assembly to collect the scattered light and 

to record the scattering image with a digital 

camera. The incident light is generated by a 

0.95mW diode laser with a beam diameter 

of 1.1mm and a wave length of 635nm 

(Figure 9a). 

( )
[ ]3

3
( , ) sin( cos( ))R q r qa qa qa

qa
= −

Figure 8: Form factor  R2(q) for monodisperse beads 
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The upper geometry is a 50mm plate of 

optical quartz glass (n=1.457 at 635 nm). 

The laser beam is located at 0.76x plate di-

ameter i.e. 19 mm from the axis of rotation 

of the plate(6) . The laser (Figure 9b) beam 

is oriented in the direction of the shear gra-

dient and the polarization of the incident 

light in shear direction 

Because of the limited space above the 

upper plate, a mirror deflects the scattered 

image in an angle of 90o onto a 2D optical 

sensor. The effective area is 6.6x5.3mm i.e. 

1280x1024 pixels. 

The laser produces linear polarized light, 

with the polarization direction pointing in 

shear direction. The optical setup provides a 

q range from 1.38 to 6.11 µm-1 (i.e. a scat-

tering angle from 6 to 26.8o). This corre-

sponds to a length scale of 1 to 4.6µm 
(using Bragg law d=λ/2 sin(θ/2)). 

A pinhole in front of the camera is set at 

the focal point for the laser light used, such 

that divergent and convergent light will not 

pass through to the 2D array. The scattering 

information from the focal point in the sam-

ple will be imaged onto the optical sensor. 

The focal point can be adjusted (plan con-

vex lens) to be in the mid section of the 

sample, between Peltier plate and upper 

glass plate. 

A neutral density filter allows adjusting 

the intensity of the initial laser light. A po-

larizer is placed in front of the pinhole and 

can be set too parallel or perpendicular po-

larization. 

Calibration 

Most of the time SALS images are used to 

evaluate the anisotropy in the sample and to 

follow the structural changes inferred by the 

deformation (rate) applied by the rheome-

ter. The scattering experiment provides 

qualitative information to explain and un-

derstand the simultaneously measured 

rheological response. For a quantitative 

evaluation of the scattered intensity as a 

function of the scattering angle, the optical 

setup needs to be calibrated. 

Figure 9: a) Schematic of the SALS setup b) Orientation of the laser in reference to the shear direction 
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In a first step, the scattering angle has to 

be related to the pixel position on the 2D 

sensor of the camera. Next the measured 

intensity needs to be corrected for the flat-

ness of the sensor array. 

In order to relate the scattering angle with 

the pixel position, the scattered intensity 

pattern of a well characterized sample is 

measured. The experimental and theoretical 

results are correlated to determine the cali-

bration factor. The calibration sample used 

is a dilute dispersion of 3µm monodisperse 
PS beads in water. The beads size is well 

within the characteristic length scale range 

of the SALS setup. The scattering of light at 

independent monodisperse beads of 3 µm 
provides a characteristic Mie scattering pat-

tern and can theoretically be predicted. The 

pattern of the scattered light consists of a 

series of concentric rings of lower and 

higher intensity around the scattering origin 

(Figure 10a). Note, the Mie scattering pat-

tern is also used to align the optical system 

by adjusting the orientation and position of 

the upper assembly. 

Figure 10b shows a comparison of the 

theoretical and measured scattering inten-

sity as a function of the scattering vector q. 

The theoretical values are calculated for a 

particle size of 3 mm, a wave length of 635 

nm and a refractive of 1.59 for the spheres 

and 1.332 for the water. q-value and scatter-

ing angle are related q=4πn/λo sin(θ/2); n 
is the refractive index of water. Figure 10c 

shows the calibration values for the scatter-

ing angle θ i.e. the q-vector. 

Figure 10: a) Mie scattering for 3 µm monodisperse PS spheres in water b) Theoretical Mie scattering calcu-
lated using the public domain program available at www.piliphaven.co/.mieplot.htm c) calibration function for 
scattering angle i.e. q value with pixel position 

The intensity measured at each individual 

pixel depends on the distance from the scat-

tering center and the angle at which the 

scattered light beam hits the sensor (sensor 

surface is flat and not spherical). The flux 

of photons on the fixed pixel surface is in-

verse proportional to the square of the dis-

tance 

      (29) 

with d the distance between scattering cen-

ter and the sensor plate, in normal direction 

and D the distance between the scattering 

center and the measured pixel. The correc-

tion of the intensity for the oblique orienta-

tion of the flat screen is 

.     (30) 

The corrected intensity Icorr is therefore 

2
2

2cos
dD

θ
=

cos
m

obliq

I
I θ=

Figure11: Steady Shear Viscosity as a function of 
shear rate. SALS scattering pattern suggest an align-
ment (shear banding) in flow direction at low shear 
rate followed by a structure reorientation i.e. break-
up above 200 s-1. 
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       (31) 

with Im, the experimental intensity. 

The measured intensity corrected for the 

setup imperfections has been shifted verti-

cally in figure 8b) to force the maxima of 

the first peak to overlap. As can be seen, the 

calibration of the intensity is less accurate 

as the second peak and the minima do not 

overlap. This has to do primarily with the 

remaining polydispersity of the 

“monodisperse” dispersion and optical im-

perfections of the SALS setup. 

TEST RESULTS AND APPLICATIONS 

Liquid soap in steady shear 

A commercial liquid soap has been tested 

in steady shear at ambient temperature over 

a shear rate range from 1 to 1000 s-1. The 

SALS images have been recorded to moni-

tor structural changes in the material with 

increasing shear rate. In figure 11, the vis-

cosity remains constant up to a shear rate of 

10 s-1 and then drops by more than one dec-

ade at a shear rate of 1000s-1 (shear thin-

ning). The scattered intensity is low and 

shows a spherical symmetric pattern at the 

beginning. With increasing shear rate, the 

pattern becomes non-symmetric and ex-

tends in the vorticity direction. At the same 

time the scattered intensity increases. An 

orientation of structural elements (shear 

3cos
m

corr

I
I

θ
=

banding?) in flow direction can be assumed. 

At 200 s-1 the pattern returns to spherical 

symmetry. The scattering pattern slightly 

elongates in flow direction when the shear 

rate approaches 1000s-1. Above 200 s-1, 

structural reorientation resp. structure 

break-up takes place while the viscosity 

function continues to behave highly shear 

thinning. 

Alignment of particles in a micellar so-

lution under steady shear 

A dispersion of 3µm PS beads (0,1vol%) 
in a micellar solution (CPySa 100mMol, 

NaSal 50mMol) has been prepared. The 

dispersion was loaded carefully into the 

rheometer, taking care to avoid the enclo-

sure of air bubbles. Steady shear tests in a 

shear rate range from 1 to 1000s-1 at 25oC 

have been performed (Figure 12). Beyond 

the short plateau region, the viscosity ex-

hibits extensive shear thinning over two 

decades in viscosity. Images of the SALS 

patterns were recorded at various shear 

rates. The SALS pattern show spherical 

symmetry with two intensity minima at low 

shear rate. These minima are typical for the 

scattering of the independent evenly distrib-

uted 3µm particles. In the viscoleastic fluid, 
these particles align into strings above a 

critical shear rate of 100 s-1. The 6-fold 

symmetry observed in the scattering pattern 
Figure 12: Steady Shear viscosity with pronounced 

Figure 13: Two step shear rate experiment with a low 
rate (5 1/s) following a high rate (1000 1/s) steady 
shear zone. The induced structure decays slowly 
because it is stabilized by the viscoelastic nature of 
the micellar matrix. 
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is indicative for a hexagonal close packed 

crystalline order (possibly at the walls)(7). 

The scattered intensity image suggests an 

aligned string phase, ordered as a crystal-

line hexagonal packing structure. 

When the flow stops, the scattering pat-

tern does not return to the original spherical 

symmetry, the fluid retains the hexagonal 

crystalline order as shown in figure 13. The 

fluid is ordered during a steady shear flow 

at 1000 s-1. After 100s the shear rate is 

stepped down to 5 s-1. Although the scatter-

ing intensity is reduced, the 6-fold symme-

try is conserved for a long time. 

The viscosity recovers within 1-2 seconds 

and reaches a steady state value of 3 Pa.s. 

This is approximately double of the viscos-

ity compared to steady shear in the un-

oriented state (Figure 13). It takes more 

than one hour continuous shear at low rate 

to recover the original structure. The vis-

coelastic nature of the micellar solution pre-

vents the stringing of the particles at low 

rate in the suspension at equilibrium and at 

the same time slows down the break-up of 

the previously induced structure. 

Shear induced phase separation of mi-

cellar solutions in LAOS 

RheoSALS measurements were per-

formed on a 40mMol EHAC solution in 

Figure 14: LAOS measurements in a strain amplitude 
range from 10 to 3000%. The transition into the non 
linear regime, showing a maximum in the loss 
modulus and the higher harmonic stress contribu-
tions is associated with a significant structural re-

300mMol NaSal at 25 oC. EHAC is a cati-

o n i c  s u r f a c t a n t  ( e r u c y l  b i s -

hydroxyethylmethylammonium chloride) 

which forms wormlike micelles in the pres-

ence of the hydrotropic salt sodium salicy-

late.  This system is known to exhibit shear-

induced phase separation when a sufficient 

high shear stress is applied(8) 

Oscillation experiments in the strain range 

from 0.1 to 30 were performed at ambient 

temperature and the transition from linear to 

non-linear behavior monitored by evaluat-

ing the stress response and the scattering 

pattern (Figure 14). Below a strain ampli-

tude of 100%, the system behaves linear 

viscoelastic and no scattering is observed. 

Between 100 and 500% strain, the dynamic 

moduli G’ and G” decrease slightly with a 

small contribution of the third harmonic 

stress.  The material system shows inherent 

non-linear behavior as the material is 

strained to its maximum. Around 500% 

strain the scattered intensity shows forma-

tion of a “butterfly” pattern. Beyond this 

strain, G’ drops significantly, G” goes 

through a maximum as well as the 3rd, 5th, 

7th and 9th harmonic stress contributions. 

The scattered intensity develops a strong 

butterfly pattern, suggesting a strong anisot-

ropy perpendicular to the flow direction, 

which probably results from phase separa-

tion(8) where interfaces between the two 

phases develop in the flow-vorticity plane. 

CONCLUSION 

A compact SALS option has been devel-

oped for use with the AR series of rheome-

ters. The option is designed for fast setup 

and minimum optical adjustment. For quan-

titative analysis, the SALS option has to be 

calibrated using a diluted dispersion of 3µm 
spheres in water. 

Application examples of simultaneous 

rheological SALS measurements are pre-

sented to demonstrate how SALS measure-

ments can be used to complement the 

rheological measurement when investigat-

ing material structure changes in steady and 

oscillation flows. 
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APPENDIX 1 PROPOGATION OF WAVES 

Consider a perturbation such as a sinusoi-

dal deflection propagating along a path z as 

a function of time (for example a continu-

ous deflection along a rope). 

A snapshot (Figure 1a) at a fixed time t1 

shows a sinusoidal trace along the direction 

z. The distance from peak to peak is the 

wave length and represents the distance 

covered over one cycle of oscillation. An 

instant dt later, the wave form has moved 

the distance vdt along the axes z; v being 

the speed of propagation. 

The same wave can be monitored as a 

function of time at a fixed position xo; the 

deflection describes a sinusoidal waveform 

as a function of time (Figure 2b). The time 

between two peaks is the period of oscilla-

tion and represents the time elapsed during 

one cycle of oscillation. The inverse of the 

period 1/T is the frequency in Hz and repre-

sents the number of oscillation cycles per 

unit of time(1,3,4).Assuming y=f(x,t) to be a 

simple deflection at the position x at time t. 

The deflection starts at time t=0 at the posi-
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Figure 1b: Wave as a function of time 

Figure 2: Propagation of a deflection along a path x 

Figure 1a: Wave as a function of distance.   
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tion x and propagates along the path x with 

the propagation speed v. At a time t, the 

deflection can be found at the position x+vt 

from the start position x at time t=0. 

Time and position for a propagating wave 

are related, which means, that f(x,t) does not 

independently depend on x or t, but on the 

combination of both. At a time t1, the de-

flection y1 at position x1 is the deflection at 

position xo at time to i.e. 

y1=f(x1,t1)=f(x1-vt1). 

For y=f(x-vt) the wave propagates from 

left to right, alternatively for y=f(x+vt) the 

wave propagates from right to left along the 

direction x. (x-vt) is the phase of the wave. 

The plane perpendicular to the direction of 

propagation for all waves with (x-vt)

=constant is referred to as “wave front”. 

(Figure 3) Waves propagating on a linear 

path are plane waves, their wave fronts are 

parallel planes. Waves propagating from a 

center point in all directions are spherical 

waves and their wave fronts are spheres. 

When the oscillation of the wave is per-

pendicular to the propagation, the wave is a 

transverse wave – electromagnetic waves 

are transverse waves. Waves oscillating in 

the direction of propagation are longitudinal 

waves (spiral spring or sound waves). 

Transverse waves can be represented by a 

vector with two components in the x,y 

plane, perpendicular to the propagation di-

rection z, defining the direction of polariza-

tion. Longitudinal waves are not polarized. 

The speed of propagation v divided by the 

distance travelled during one cycle (wave 

length λ) represents the number of cycles 

per time, this is the frequency f in Hz. 

 

With f=ω/2π ( ω angular frequency) the 
wave length can be expressed as: 

 

Similar to the frequency ω, which repre-
sents the number of cycles/ unit of time, 

does the wave number k represent the num-

ber of cycles/distance. k is the wave number 

and related to the frequency and the speed 

of propagation according to: 

 

A harmonic wave oscillates according to a 

sinusoidal function. At a given time t in 

space under steady state oscillation, the de-

flection is described as: 

y=y0sin(kx) 

The profile of a sinusoidal function repeats 

after a distance x=2π/k=λ. The general 

equation for an oscillating wave at a point z 

on the propagation axes is: 

. 

If t=0 at a position z, then ϕ=kz and above 
wave equation reduces to: 

 
in complex notation 

. 

 

Light waves are electromagnetic waves 

and are represented by the electric field E

(t,z) propagating in direction z  at the speed 

of light c=ω/k. The equation of motion for 
the electric field vector is: 

E=Eoexp{i(kz-ωt+ϕ)} 

The sign of the argument is a matter of 

convention. 

Since a wave propagates along a direction 

= vf λ

2= vπλ ω

2 2f
k

v v
πω π

λ= = =

=y sin( )oy tω ϕ+

sin( )oy y t kzω= +

Figure 3: The wave front of plane waves propagating 
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z in space (light propagates radial from a 

center point into all directions), k is a vector 

and not a scalar value. 

With n, the refractive index defined as c/v, 

the ratio of speed of light in vacuum and 

speed of light in matter, the wave number k 

can be expressed as: 

 

APPENDIX 2: DETERMINATION OF THE 

MAGNITUDE OF THE Q-VECTOR 

The phase factor eiδ represents the inter-

ference effects of the scattered waves and 

depends on the scattering angle θ and the 
distance d =|x| between the scattering points 

of the object. 

Consider coherent light travelling along 

the direction ni and scattered by an object 

with a characteristic length scale x in the 

direction ns 

 

OQ = b is the bisectrix of the angle AOB. 

2= nk π
λ

 

Figure 4: Determination of the q vector 

With the scattering angle θ, and OQ the bi-
sectrix, the angle AOQ = (180-θ)/2. Conse-
quently the angle AQO = 180-(180-θ)/2-90 
= θ/2. The distance OA = OQsin(θ/2)=bsin
(θ/2). 

The total path difference between a ray 

passing through O and P is:  

AO + OB = 2OA  = 2bsin(θ/2) 

                              = (ns-ni)·x 

The phase difference δ is obtained by 
multiplying the path difference with k=2π/
λ: 

 
 

In the plane PQ, perpendicular to OQ, the 

path difference is the same. The form factor 

therefore is obtained by integrating the 

phase factor along the bisectrix by slices of 

thickness db and an area B: (2 page87) 
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