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From a molecular dynamical view the de-

formation within the LVR has to be amply 

small or at least applied sufficiently slowly, 

that the arrangement of the molecules is 

never far from a thermodynamic equilib-

rium; the sample is not altered by the meas-

urement itself. To determine this maximum 

tolerable, critical deformation is the aim of 

a so-called strain sweep. A typical result is 

shown in Fig. 2 for a 4 w% aqueous 

solution of Xanthan Gum. 

During such a strain sweep the amplitude 

of the angular displacement is increased 

stepwise at constant frequency, in this case 

1 Hz, and the calculated dynamic moduli G´ 

and G˝ are plotted against the strain ampli-

tude. The linear viscoelastic region expands 

in the shown example up to a strain of 

about 15 %, characterized by moduli inde-

pendent of the strain amplitude. The left 

image Fig. 3 proves that the waveforms of 

both the excitation (strain) and the response 

(stress) are simple sinusoids with the same 

frequency. These two signals that are both 

drawn with solid lines in Fig. 3 can be 

differentiated just with the sufficient 

information, that the stress always advances 

the strain.  

 

INTRODUCTION 

In an oscillatory experiment a sinusoidal 

strain or stress is applied to a sample of a 

material under investigation while measur-

ing the respective answer of the sample. 

The desired material function is then calcu-

lated from the transient signals. This mate-

rial function is called ―modulus‖ if the 

stress is related to the strain or ―viscosity‖ 

in case of the stress being related to the 

strain rate, whereas the ratio of strain to 

stress has the character of a ―compliance‖. 

Due to the delay between the excitation and 

the response signals these material func-

tions are generally complex. As sketched in 

Fig. 1 the transient stress * can be 

decomposed into an elastic stress ´, in 

phase with the deformation , and a viscous 

stress ˝, in phase with the deformation rate 

. 

SAOS AND THE LINEAR VISCOELASTIC 

REGION  

Within the so-called linear viscoelastic 

region (LVR) the response to a sinusoidal 

excitation is again simply a sinusoid with 

the same frequency, and moreover the ratio 

of the amplitudes of input and output sig-

nals is independent of the amplitude of the 

excitation, for example: 
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Figure 1: Decomposition of the complex stress into an elastic and a viscous contribution and calculation of the 
 respective moduli  

 

Figure 2: Dynamic moduli obtained from a deformation sweep on a Xanthan Gum solution at constant 
 frequency of 1 Hz. 50 mm-cone/plate system with 0.04 rad.  

At larger strains a dependency of the 

moduli on strain occurs in the given exam-

ple in such a way, that the storage modulus 

G’ decreases, whereas the loss modulus G” 

first increases and then decreases, like an 

overshoot phenomenon. In literature this 

transition from linear to non-linear behavior 

is termed Type III [1]. From the shape of 

the center and the right waveforms in Fig. 3 

it is evident that the material’s response to a 

still sinusoidal excitation cannot be 

characterized by a sinusoidal function of the 

same frequency any more; all the quantities 

that are well known from the linear 

viscoelastic theory, such as the complex 

modulus |G*|, the storage modulus G´, the 

loss modulus G˝ or even the loss factor tan 

δ loose their physical meaning. 

LAOS and the issue of quantifying non-

linear behavior 

The stress response of a material to a sinu-

soidal strain with large amplitude is not 

only composed of a contribution that oscil-

lates with the excitation frequency, but 

shows also some higher frequencies, that 

are invariably integer, neglecting edge ef-

fects yet odd multiples of the excitation fre-

quency. There is a quite simple reason for 

only the odd numbers: 
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The viscosity of a material can only be an 

even, symmetric function of the shear rate, 

as the direction of the deformation has no 

influence on the resistance against it: 

 

(2) 

 

The shear stress required for this deforma-

tion is the product of viscosity and shear 

rate: 

 

 

 

The shear rate in an oscillatory experiment 

is the derivative of the strain with respect to 

time:                   

 

 

 

  (4) 

 

 

 

 

and substituting (4) in (3) gives for the tran-

sient stress  

 

 (5) 

 

 

The only odd powers of the cosines can be 

converted [2] into 

 

Substituting in Eq. (5) shows that only 

odd multiples of the excitation frequency ω 

contribute to the stress response. The mag-

nitudes of these contributions with higher 

frequencies can be determined by either 

cross-correlating the stress response against 

sinusoids with odd multiples of the excita-

tion frequency or directly by a frequency 

analysis called Fourier transformation [3 –

 5]. The cross-correlation results in discrete 

values for amplitudes and phase shifts of 

the higher-frequent contributions, from the 

Fourier transformation however spectra of 

these quantities is obtained with more or 

less distinct maxima of the intensities oc-

curring at the odd multiples of the excita-

tion frequency.  

From the ratio of amplitudes of the higher

-frequent contributions to the amplitude of 

the fundamental stress, i. e. that amount of 

the stress oscillating with the excitation fre-

quency, so-called relative intensities In/I1 of 

the nth harmonic can be derived, that are 

plotted in Fig. 4. On leaving the LVR by 

increasing strain amplitude to 15 % at first 

the relative intensity of the third harmonics 

() increases, at higher strains then also 

those of the fifth (), seventh ( ) and ninth 

( ◊ ) harmonics do. An explanation, e. g. 

why the relative intensities exhibit a maxi-

mum, in order to discuss the material be-

havior, is at present a matter of research 

[6 – 10].  

Fig. 5 shows further the phase shifts n 

between the nth harmonic and the funda-

mental stress, plotted as a function of the 

strain amplitude. Within the LVR such a 

phase shift is naturally pointless; its defini-

tion only acquires a foundation, as soon as 

the respective higher-frequent contribution 

has gained a significant intensity. 

The following shall attempt to clarify, in 

which way higher harmonics influence the 

stress response and especially the shape of 

their curves in the different means of 

graphical representation. In order to keep 

the number of parameters manageable, only 

the influence of the third harmonic’s phase 

shift 3 and that of the fundamental d1 at a 

fixed relative intensity I3/I1 = 0.1 will be 

discussed. Note: following the proposal of 

Neidhöfer et al. [6] n denotes the phase 

shift between the nth higher harmonics and 

the fundamental stress, in contrast to the 

phase shift 1 being the one between funda-
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γ0 = 6,3 % γ0 = 63 % γ0 = 630 % 

 
Figure 3: Waveforms of the excitation signal strain and response signal stress during the strain sweep shown in 
 Fig. 2 on Xanthan Gum at different strains  

Figure 4: Relative intensities In/I1 of the nth harmonics  ( n = 3,  n = 5, n = 7,  n = 9) 

Figure 5: : Phase shift n of the nth harmonics  (▲ n = 3,  n = 5, ▼ n = 7,  n = 9)  
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mental stress and the deformation, in ex-

actly the same way as the phase angle , 

which is well known from the theory of lin-

ear viscoelasticity. 

WAVEFORMS  

Fig. 6 shows the waveforms of the stress 

for I3/I1 = 0.1 at various phase shifts 1 of 

the fundamental and 3 of the third 

harmonics versus the time, normalized with 

the frequency, over one period of 

oscillation. The open symbols indicate the 

respective stress contributions, the filled 

symbols represent the sum of them; both 

are normalized with the amplitude of the 

fundamental stress, while the deformation 

 3 = 0° 3 = 90° 3 = 180° 3 = 270° 

1 = 0° 

    

1 = 30° 

    

1 = 60° 

    

1 = 90° 

    

 

Figure 6: : Waveforms of the stress for I3/I1 = 0.1 at various phase shifts  

(solid line) is scaled with the strain 

amplitude. 

Generally the phase angle 3 lies between 

0° and 360°, d 1 however only between 0° 

and 90°, just as the „viscoelastic phase 

shift― d. For 1 = 0° the fundamental stress 

and the deformation are in-phase; without 

any third harmonics this was an example of 

ideally elastic behavior. The occurrence of 

a third harmonics leads to a change in shape 

of the stress wave, depending on the value 

of the phase shift 3: 

for 3 = 180° the stress wave gets 

compressed vertically (—> square 

wave) 

for 3 = 190° the stress wave gets 

distorted to the right (—> trailing 
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edge sawtooth wave) 

for 3 = 180° the stress wave gets 

stretched  vertically  (—>  triangle 

wave) 

for 3 = 270° the stress wave gets 

distorted to the left (—> leading 

edge sawtooth wave)     

 LISSAJOUS FIGURES  

Due to the fact that the phase shift 3 is 

referred to the fundamental, the phase angle 

d1 has no relevance for the shape of the cu-

mulative stress curve, whereas it has an in-

fluence on the well known Lissajous figures 

shown in Fig. 7. Lissajous figures arise 

from a superposition of harmonic 

 3 = 0° 3 = 90° 3 = 180° 3 = 270° 

1 = 0° 

    

1 = 30° 

    

1 = 60° 

    

1 = 90° 

    

 

Figure 7: Lissajous-Bowditch figures for I3/I1 = 0.1 at various phase shifts  

oscillations as plots of in this case the stress 

against the strain. The shape of such a 

Lissajous figure depends on the frequency 

ratio and the phase difference at the 

beginning of the oscillation. For equal 

frequencies the figure is an ellipse with 

varying eccentricity depending on the 

phase. A line through the origin (open 

symbols in the row for 1 = 0°) reveals the 

limiting linear case of purely elastic 

behavior, as the circle does for purely 

viscous behavior (open symbols in the row 

for 1 = 90°), provided an adequate scaling 

of the properties with their respective 

amplitudes. A general rule within the linear 

viscoelastic region is, that the sine of the 

(linear viscoelastic !) phase angle δ is the 
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positive value at the intersect of the Lissa-

jous curve with the normalized strain axis. 

A Lissajous figures stays unchanged with 

time, if the two frequencies involved have a 

rational ratio, i. e. can be written as a 

fraction of integer numbers; this is even 

more the case, if only odd multiples of the 

excitation frequency occur in the stress 

response. But also the in the Lissajous-

Bowditch figures the effect of a third 

harmonics and its phase angle 3 becomes 

evident: the „viscoelastic basic shape― of an 

ellipse gets distorted vertically. As the 

parameter time is eliminated in this 

representation, the Lissajous figures do not 

contain further information, other that the 

waveforms in Fig. 6. But during an 

experiment it is convenient to monitor the 

(at first transient) Lissajous figures 

approaching a temporally stable pattern, in 

order to evaluate, whether (or when) the 

system has reached a quasi-steady state as 

far as both the amplitudes or relative 

intensities In/I1 and the phase shifts n are 

concerned.  

 SIGNAL PROCESSING MY MEANS OF DIS-

CRETE FOURIER TRANSFORMATION AND 

CROSS-CORRELATION  

The (continuous) Fourier transformation 

allows for expanding any continuous, even 

a periodic process x(t) in a Fourier series 

with the continuous spectrum X(ω): 

(7) 

 

As a rheometer samples the data signals at 

discrete points in time, there is no continu-

ous function x(t) for the evaluation avail-

able, only a number M of measurements x

(m) of such a signal, that are each moni-

tored after time intervals Δt. The highest 

frequency, that can be determined from 

such a data set is the so-called Nyquist fre-

quency 1/(2×Δt) [11], which is exactly half 

as large as the sampling rate [12]; the small-

est frequency is given by the inverse of the 
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crete frequencies with 

 

 

(8) 

 

contribute to the measurements x(m) = x

(m·Δt) with an amount of 

 

 

(9) 

 

The resulting frequency spectrum is usually 

complex, even though the input values 

might be real, as the transient signal has not 

only an amplitude |X(k)|, but also a phase 

shift k given by  

 

(10) 

 

with 

For real input values x(m) the terms be-

tween the braces just vanish. Nevertheless 

the effort in arithmetic operation lies in the 

order of O(M2), as both k and m run through 

all integer values from 1 to M /2 and 0 to M-

1, respectively. Therefore the so-called FFT 

or „Fast Fourier Transformation has been 

established especially for practical applica-

tions, as the arithmetic effort is „only― of O

(M·log M). Contrary to the direct calcula-

tion, the FFT uses intermediate data that 

have already been calculated, thus saving 

computational time. One of the prerequi-

sites for the FFT’s application is the num-
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ber of measurands M being a power of 2. 

But as the number of data points recorded 

during a measurement is free of choice, this 

is no serious restriction. Without precisely 

describing the literal algorithm of an FFT 

(this can be found in the respective litera-

ture), the efficiency of an FFT can be dem-

onstrated with a thought example of the cal-

culation for M=1000 data points: a conven-

tional Fourier transformation with an effort 

of O(M2) needs on the order of 1000·1000 = 

103·103 = 106, i. e. one million calculations, 

whereas an FFT with O(M·log M) reduces 

this number down to just 1000·log(1000) = 

1000·3 = 3000 ! The disadvantage of all the 

Fourier methods is merely that the evalua-

tion can only be done subsequently, after all 

the data have been saved and stored. In the 

era of main memories measured in giga-

bytes and terabytes of hard disk sizes this 

should not cause any issue. As additional 

information the Fourier transformation de-

livers also values for the intensities between 

the higher harmonics, enabling the quantifi-

cation of a signal-to-noise ratio with con-

clusions on the significance of the obtained 

relative intensities. 

The cross-correlation, an alternative for the 

Fourier  transformation,  performs  the 

evaluation virtually in real time, but gives 

no hint on the noise of the signal. Moreover 

the  data  set  has  to  comply  with  some 

requirements to allow for the application of 

this  method.  This  is  one  of  the  major 

differences between cross-correlation and 

the Fourier transformation, even though the 

mathematical  operations  themselves  are 

quite similar. 

In  signal  analysis  cross-correlation  is  a 

measure of similarity of two waveforms as 

a function of a time-lag applied to one of 

them. Provided that the frequency of the 

measurands is known (as in the case of a 

stress response to a strain within the LVR), 

both properties, stress and strain, can be 

correlated with each a reference sine and a 

reference cosine as follows: 

 

 

 

 

 

 

 

(12) 

 

 

 

The number M of measurands sampled 

each in temporal lags Δt has to be chosen in 

such a way, that the overall measuring time 

M·Δt coincides with either exactly a quar-

ter, the half or an integer multiple of the 

oscillation period. Meeting this requirement 

is finally crucial for the accuracy of an 

evaluation by cross-correlation.  

The intensities and phase shifts of also the 

higher harmonics can be determined with 

exactly the same method of evaluation, as 

they contribute in the same way with a 
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known frequency to the response signal of 

the stress. Therefore the signals are simi-

larly cross-correlated with reference waves 

of odd integer multiples of the excitation 

frequency: 

 

(13) 

 

with n = 1 for the fundamental and 

n = 3, 5, 7,... for the 3., 5., 7.,... higher har-

monics. From these correlation either inten-

sities and phase shifts (related to the strain) 

can be derived as  

 

(14) 

 

or relative intensities In/I1 and harmonic 

phases in (related to the fundamental stress) 

as: 

 

(15) 

 

Instead of these properties the so-called 

Fourier coefficients Gn´ und  Gn˝ can be de-

termined from the intensities and phase 

shifts in Eq. (14), representing the stress 

response in the time domain: 

INTERPRETATION OF THE ADDITIONAL 

PARAMETERS ON EXPLAINING A MATE-

RIAL’S BEHAVIOR 

Hyaluronic acid (also called Hyaluronan) 

is a glycosaminoglycan, consisting of up to 

100,000 repeated disaccharide units (cf. Fig. 
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9). Hyaluronan exhibits the ability to im-

bibe extremely large amounts of water re-

lated to its own mass (up to six liter water 

per gram). The volume required by a hy-

drated hyaluronan molecule can be as much 

as 10,000 times higher than that of the 

molecule itself [13]. Hyaluronan is distrib-

uted widely throughout connective,  epithe-

lial, and neural tissues and can satisfy many 

requirements within the human body due to 

the numerous and diverse chemico-physical 

properties. The vitreous humor of the hu-

man eye for example consists of about 98 % 

of water, bound to not more than 2 % of 

hyaluronan. Vitreous humor is the clear gel 

that fills the space between the lens and the 

retina of the eyeball of humans and other 

vertebrates. It is often referred to as the vit-

reous body or simply ―the vitreous". The 

term ―Hyaluronic acid‖ itself is derived 

from hyalos (Greek for vitreous) and uronic 

acid because it was first isolated from the 

vitreous humor and possesses a high uronic 

acid content. Water, practically incom-

pressible, adds this property to any tissue 

that contains hyaluronan; this makes it of 

essential importance for the stability of con-

nective tissue, especially during the phase 

of embryonic development, where rigid 

structures have not been developed suffi-

ciently [14]. During a later stage of devel-

opment, when the ability of the skin to re-

pair itself by cell proliferation becomes less 

and less effective, hyaluronan once more 

gains of importance: this time for the 

external application as a cosmetic skin care 

product, or injected subcutaneously for 

filling soft tissue defects such as facial 

wrinkles. But also in the esthetic surgery 

hyaluron based products are not only used 

to plump up lips, but also for facial 

reconstruction or even arthritic treatment 

[14].  

Figure 9: Structural unit of Hyaluronan  
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Furthermore hyaluronan can be found in 

the Nucleus pulposus [15], the jelly-like 

core of intervertebral (spinal) disks, where 

it aids in distributing the hydraulic pressure 

in all directions within each disc under 

compressive loads, or as a main ingredient 

in the synovial fluid, where it acts as a 

natural lubricant and thus reduces the 

friction between the articular cartilage and 

other tissues in the joint to lubricate and 

cushion them during movement [16]. The 

conditions, under which hyaluronan has to 

exhibit these as lubricating as damping 

properties are certainly hard to compare 

with those during a deformation within the 

linear viscoelastic region between the 

geometries of a rheometer; monitoring the 

material’s response to extremely large 

deformations is required: it all comes down 

to LAOS. 

Fig. 10 shows the result of a strain sweep 

on a 1 w/w-% aqueous hyaluronan solution 

at a frequency of 1 Hz. The linear 

viscoelastic region, revealed by values for 

storage modulus G´ () and loss modulus 

G˝ ( ), that are independent on the 

command strain amplitude, extends up to 

deformations of about 60 %; at higher 

strains the loss modulus decreases 

significantly. The storage modulus remains 

fairly constant up to approx. 100 %, and 

decreases afterwards aswell. According to 

[1] this behavior is typical for a transition 

into the non-linear range of Type I. But 

already at a strain of 25 % a significant 

relative intensity I3/I1 of the third harmonics 

() comes into play together with a related 

harmonic phase φ3 (s). Higher harmonics 

shall be neglected in this consideration.  

The harmonic phase φ3 increases with the 

strain from –90° (= 270°) up to 0° (=  360°). 

From these values and the cognition of Fig. 

6 the conclusion is straightforward, that the 

waveforms of the stress response have to be 

distorted to the left at small strains, while 

getting more and more compressed with 

increasing strain. The proof can be found in 

Fig. 11; again stress and strain are plotted 

indistinguishably with solid lines, but as 

always the stress advances the strain.  

Figure 10: Dynamic moduli, relative intensity I3/I1 and the corresponding phases from a strain sweep on a 1 w/w
-%hyaluronan solution at constant frequency of 1 Hz. 40 mm on 50 mm parallel plates.  
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γ0 = 63 %  γ0 = 630 %  γ0 = 6300 % 

I3/I1 = 0,44 %  I3/I1 = 9,2 %  I3/I1 = 23,2 % 

φ3 = 

= 

–77,5° 

282,5° 

 φ3 = 

= 

–47,0° 

313,0° 

 φ3 = 

= 

–11,6° 

348,4° 

 Figure 11: Waveforms of the command strain and the response stress during the strain sweep  in Fig. 10 on 
hyaluronan . 

The influence of the occurrence of higher 

harmonics on a material’s behavior can nei-

ther be qualified, nor quantified by discuss-

ing the harmonic phase φ3; only the combi-

nation with the phase shift  = 1 (◊) known 

from the linear viscoelasticity between the 

(fundamental) stress and the strain results in 

the phase 3 ( ) related to the deformation 

by rearranging Eq. (15.2): 

(17) 

  

The impact of the third higher harmonics 

on the material behavior varying with the 

magnitude of this effective phase angle 3 

can be elucidated easily with the LAOS cir-

cle [17] in Fig. 12: 

 
133 *3

Figure 11: The LAOS circle as graphical 
representation of the impact of a third higher 
harmonics on a material’s behavior  

For waveforms shown in Fig. 11 the 

effective phase 3 has the following values 

3 = 89.5° 

3 = 182.9° 

3 = 257.3° 

and allows accordingly the following inter-

pretation for the „application― in a knee 

joint: 

1. At ―small― strains, just outside the 

LVR, 3 is about 90° and the mate-

rial shows with a quasi linear-elastic 

behavior (comparable with the be-

havior within the LVR), while the 

shear thickening, that accompanies 

the  onset  of  non-linearity,  has  a 

rather stabilizing effect, for example 

during standing still. 

2. At ―large― strains of several 100 

percent 3 is close to 180° and the 

material  acts  linearly  viscous, 

though  strain  hardening,  which 

damps in a certain way the shocks 

while bouncing or rope skipping. 

3. At  extremely  large  strains,  that 

might occur during running fast, 3 

increases up to about 250°, so the 

material doesn’t exhibit these hard-

ening or damping properties to still 

the  same  degree,  but  rather  acts 

more shear thinning, in a sense of 

lubricating,  to  reduce  the  friction 

within the joint during movement. 
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LAOS – ALSO AN EXPERIMENTAL CHAL-

LENGE 

Compared to measurement within the 

LVR there are some more experimental as-

pects to consider in LAOS experiments, 

which greatly influence the quality of the 

results. Irrespective of the magnitude of the 

strain amplitude the shape of the sample has 

to be stable and uniform. Every occurrence 

of edge fracture or swelling between the 

geometries leads to erroneous measure-

ments in either case; but especially at large 

strain amplitudes these failures might occur 

at surprisingly low frequencies.  

In the very first place the time is critical 

for the sample to reach a steady state. In 

LAOS experiments this time is much larger 

than in the alternative experiments with 

small strains. Usually 3 cycles for condi-

tioning of the sample are considered to be 

sufficient in ordinary small strain experi-

ments, but at large strain amplitudes it may 

take as long as 10 or more cycles, until the 

sample reacts with a quasi-steady state re-

sponse in stress, as shown quite dramati-

cally in Fig. 13: During the first 60 seconds 

the stress amplitude decreases from cycle to 

cycle, only in the second half of the 

experiment it reaches a constant value.   

SUMMARY 

Conventional oscillatory experiments with 

comparably small deformations within the 

linear viscoelastic region (SAOS = Small 

Amplitude Oscillatory Shear) are usually 

performed with the goal of characterizing a 

material in a preferably well-defined state 

of equilibrium, for example to obtain infor-

mation on the frequency dependent material 

behavior. The deformation, which is in the 

end imposed on the material, is very rarely 

even of the same order of magnitude as the 

strain a material is subjected to in the later 

application. By means of oscillatory experi-

ments with ‖large― amplitude (LAOS = 

Large Amplitude Oscillatory Shear) at least 

a ―rheological finger print‖ if not a charac-

terization of the material can be obtained 

under conditions that might be a bit closer 

to those in reality. The representation of the 

furthermore non-linear behavior can be 

done in a graphical way 

1. by means of waveforms, i. e. transient 

curves of stress and strain, or 

2. as Lissajous-Bowditch figures, where 

the time is eliminated as parameter 

and the stress is plotted as a function 

of either the strain or the strain rate; a 

Figure 13: Transient stress (t) and strain (t) in oscillation with  = 1rad/s and | *| = 3000 %  
on a mixture of PVA/Borax  
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set of these figures dependent on fre-

quency and amplitude is then called 

Pipkin diagram [18], 

on the other hand a quantification of the 

higher harmonics in the stress response on 

a sinusoidal deformation is achievable by 

indicating  

3. the relative intensities, or intensity ra-

tios In/I1 and the harmonic phases n 

related to the fundamental stress or 

alternatively 

4. the Fourier coefficients Gn´ und  Gn˝ 

corresponding to the storage modulus 

G´ and loss modulus  G˝ from SAOS 

experiments or analogously 

5. the complex modulus |Gn*| together 

with the phase n referred to the defor-

mation 

of in each case the nth higher harmonics. 

Irrespective of which representation might 

be individually preferred, the number of 

parameters will increase by two for each 

and every higher harmonic taken into ac-

count; as it is not unlikely, to get up to 147 

higher harmonics with sufficiently large 

signal-to-noise ratios from a Fourier trans-

formation [19], there is plenty of room for 

interpreting the influence of no fewer than 

294 (!) more degrees of freedom on the be-

havior of a material under investigation.  
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Figure 14: A Tsunami – yet another wave with extremely large amplitude  


