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ABSTRACT 

The nonlinear stress response upon a sinusoidal 

strain input on the  ARES-G2 can be recorded and 

analyzed in two ways: 1. Fast sampling of the stress 

as a function of time followed by discrete Fourier 

analysis (DFT) or decomposition of the stress signal 

into an elastic and viscous component. 2. Direct cor-

relation of the measured stress and the input strain to 

determine the magnitude and phase of the funda-

mental and harmonics up to the 9th order. This 

method can be conveniently integrated into standard 

test modes such as time, strain or frequency sweeps 

which provide the desired results (dynamic moduli 

G’n. G”n or magnitude ratio In(ωn)/I1(ω)) immedi-

ately. 

Nonlinear oscillation measurements of a 4wt% 

Xanthan gum solution have been performed as a 

function of strain amplitude. Fourier coefficients of 

the stress signal are evaluated by direct correlation, 

discrete Fourier transformation and decomposition 

of the measured stress in a contribution in phase 

with the strain and one in phase with the strain rate. 

The results are compared and analyzed in terms of 

reproducibility and accuracy of the method. Struc-

tural changes during the transition from linear to 

nonlinear behavior are discussed based on elastic 

and viscous deformation mechanisms. 

INTRODUCTION 

During an oscillation experiment on a 

Separate Motor Transducer (SMT) rheome-

ter, a sinusoidal deformation is applied to 

the material. As long as the total deforma-

tion is small, linear viscoelasticity prevails 

and the measured stress at steady state re-

mains sinusoidal. In order to evaluate the 

material’s response, the stress is decom-

posed into two wave functions, one in phase 

with the strain and one in phase with the 

strain rate. In analogy to a solid material 

(strain and stress are in phase) and a simple 

fluid (strain rate and stress are in phase), the 

part in phase with the strain represents the 

elastic (solid like) deformation behavior, 

the part in phase with the strain rate (out of 

phase with the strain) is the viscous (fluid 

like) behavior. As such, the stress can be 

expressed by the sum of the two compo-

nents as follows: 

  

 (1) 

Instead of representing the stress and 

strain versus time explicitly, the stress can 

be plotted against the strain directly (Figure 

1). As long as the measured stress wave is 

sinusoidal the stress describes an ellipsoid 

in this representation, also referred to as 

“Lissajous” representation1. When the 

stress is in-phase with the strain, the ellip-

soid collapses to a straight line through the 

origin. 

When the stress response of the material 

upon a sinusoidal strain input is not a sim-

ple sinusoidal function, the material be-

haves nonlinear and the ellipsoid in the 

stress-strain representation changes to a 

more complex geometrical shape.  The 

nonlinear stress response for example can 
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though this mathematical analysis of 

nonlinear signals provides a complete de-

scription of the stress response; it is diffi-

cult a priori to associate the results from the 

Fourier analysis with physical material 

properties. The dynamic modulus G’, repre-

senting the elastic nature of a material and 

G”, representing the viscous dissipation of 

energy in the linear region lose their physi-

cal meaning.  In analogy to the linear vis-

coelasticity, the components of the nonlin-

ear response in phase with the strain and in 

be developed in a Fourier series according 

to: 

 

(2) 

 

and in complex notation: 

   

 

(3) 

Although the Lissajous figure represents 

an excellent visual aid for qualitative analy-

sis, it is difficult to use when a quantitative 

evaluation is required. In this case it is more 

convenient to extract the various compo-

nents of the stress response by Fourier 

transformation. The Fourier transformation 

decomposes the stress signal and produces a 

frequency spectrum represented by the fun-

damental and higher order odd harmonics2. 

Each peak in the spectrum is characterized 

by a magnitude an and a phase φn.  Al-

Figure 1: Lissajous representation of the measured 
stress response upon a sinusoidal strain input in 
case of linear (upper) and nonlinear (lower) response 
for a PIB solution 

Figure 2: Representation of the measured stress, the 
viscous and elastic stress for a PIB solution plotted 
versus time, strain and strain rate tested at 3000% 
strain and a frequency of 1 rad/s. 
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phase with the strain rate can be interpreted 

as elastic and viscous stress3. Based on 

symmetry arguments, the measured stress 

can be decomposed into an elastic stress 

component σ‘ and  a viscous stress compo-

nent σ” (Figure 2). Both stress components 

σ' and σ” are unique functions (single curve 
in the Lissajous representation) of strain i.e. 

strain rate. The elastic and viscous stress 

components can be conveniently fitted by 

Chebyshev polynomials of the first kind4. 

The higher order Chebyshev coefficients 

(en, vn) are excellent parameters to describe 

intra-cycle changes of the elastic and vis-

cous stress. A positive e3 (3
rd order coeffi-

cient) corresponds to an increase of the 

maximum elastic stress (intra-cycle strain 

stiffening), a negative e3 to a decrease of 

the maximum elastic stress (intra-cycle 

strain softening). The Chebyshev coeffi-

cients are related to the Fourier coefficients 

(G’n, G”n)
5 in a simple way according to: 

 

  

(n=odd)  

  

 (4) 

In the linear regime, all higher order coef-

ficients disappear and e1 represents G’, the 

linear viscoelastic storage modulus and v1ω 
represents G”, the loss modulus. The same 

physical interpretation of e3 can be attached 

to G’3 , the 3
rd order Fourier coefficient and 

so on – thus providing physical meaning to 

the  higher harmonic coefficients obtained 

from correlation i.e. Fourier transform tech-

niques, commonly used in commercial 

rheometers. 

EXPERIMENTAL 

Oscillation rheometers generate test re-

sults in terms of elastic and viscous 

modulus from dynamic mechanical experi-

ments by evaluating G’1 and G”1, the first 

order Fourier coefficients. Because of in-

creasing interest in highly nonlinear mate-

rial behavior, an easy to use approach to 

evaluate the results obtained under large 

oscillation strains (LAOS) is needed. A 

number of investigations have been con-

ducted in this respect in the nonlinear vis-

coelastic region under large oscillation 

strain conditions 6, 7, 8 using discrete Fourier 

transformation to evaluate the stress re-

sponse. 

The special feature of the new ARES-G2 

rheometer, based on the unique SMT tech-

nique is to perform experiments at large 

oscillation strains and to measure the mate-

rial’s response with the accuracy and tem-

poral resolution necessary to allow a quanti-

tative analysis of the higher order harmonic 

contributions of the raw stress signal. The 

rheometer uses a data acquisition system 

which incorporates fast acquisition channels 

for displacement, torque, normal force and 

an auxiliary signal with a sampling rate of 

8kHz each. Pre-averaging based on over-

sampling techniques further improves the 

signal to noise ratio of the raw signals. The 

ARES-G2 provides two methods to analyze 

the oscillation data: 

1.  Real time correlation to determine mag-

nitude and phase of the fundamental and 

the higher order components during the 

test. In this mode results up to the 9th 

order harmonic contribution can be ob-

tained simultaneously. The advantage of 

this approach is the full integration into 

the existing methodology of performing 

oscillation tests. Higher harmonic 

analysis can be selectively checked in 

the correlation settings of all standard 

oscillation test modes. 

2. Post-processing of the raw strain and 

stress data using discrete Fourier trans-

formation (DFT) after previous sam-

pling and saving the raw signals. A new 

test mode, the “SineTransient” collects 

the raw oscillation stress (shear and/or 

normal) and strain data as a function of 

time. The maximum order for the har-

monic evaluation is not limited and can 

be selected based on the significance of 

the magnitude of the harmonics. 

( 1)
' 2

"
'

( 1)
n

n n

n
n n

e G

G
v η

ω

−

= −

= =



4 AAN031   V1 

The material used in this investigation is a 

4wt% aqueous solution of Xanthan gum 

(Sigma-Aldrich Co.). The sample was dis-

solved in purified water over night and vig-

orously stirred for several hours. 

The rheological measurements were per-

formed using a 50mm diameter stainless 

steel cone plate geometry with a cone angle 

of 0.04rad and a cone truncation of 50µm. 

Oscillation strain sweep experiments were 

conducted from 10-4 to 100 strain units. The 

correlation conditions for each data point 

were: 10 cycles delay and 10 cycles for cor-

relation. The nth order harmonic is obtained 

by correlating the measured stress and 

strain signals with two out of phase refer-

ence signals at n-times the fundamental fre-

quency. The test (strain excitation) fre-

quency in this study is 1 Hz. The phase and 

the magnitude of the fundamentals and the 

odd harmonics (3rd, 5th, 7th, and 9th) were 

recorded. In a second step, SineTransient 

experiments at fixed frequency and strain 

amplitude were performed in the range 

from 0.01 to 63 strain units. The correlation 

conditions were chosen to be the same as 

those for the strain sweep experiment: 10 

cycles delay and 10 cycles for data sam-

pling. The sampling rate for all measured 

signals was 1000 pts/s. The stress and strain 

signals are converted using a discrete Fou-

rier transformation routine (DFT) to extract 

magnitude and phase for all significant har-

monic contributions and the Fourier coeffi-

cients G’n and G”n were calculated accord-

ing to equation 2.  The same set of data was 

also evaluated using the MITLAOS pack-

age9 to determine the Chebyshev coeffi-

cients. The same order of harmonic contri-

butions was used in both evaluations. 

RESULTS 

Analysis of the results from the strain 

sweep experiment 

Figure 3 shows the storage and loss 

modulus (G’, G”) of the Xanthan gum solu-

tion as a function of the strain amplitude γo. 
Beyond 20% strain G’ decreases; G” ini-

tially increases slightly then decreases, 

however at a lower pace. The response with 

a weak G” overshoot is a type III behavior 

according to the classification proposed by 

Hyun et al.10. The same graph includes the 

magnitudes of the higher harmonic stress 

contributions, reduced to relative intensities 

according to (Index 1 represents the funda-

mental): 

           

   

(5) 

In the linear region (below 20% strain), 

the magnitudes of the higher harmonic con-

tributions are zero. At the onset of the 

nonlinear response, the magnitude of the 3rd 

harmonic stress increases sharply. The 

shape of the stress waveform in this region 

is tilted backwards and asymmetric in re-

spect to a vertical line through the mid 

point. In the region characterized by a 

steady decrease of G’ and G” at ~ 600% 

strain, the relative magnitude of the 3rd har-

monic stress decreases again.  The shape of 

Figure 3: Strain sweep of a  Xanthan gum (4wt%) 
solution with the dynamic modulus G’ and G” as well 
as the relative magnitudes of the 3rd, 5th, 7th and 9th 
harmonic stress contributions. 
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the stress waveform has changed signifi-

cantly, shows a flat plateau and has partially 

recovered its symmetry. The relative mag-

nitudes of the 5th, 7th and 9th harmonic stress 

follow the same trend, however they do ap-

pear at a higher strain and the magnitude is 

less pronounced. 

Below figure 3 the Lissajous figures, rep-

resenting the stress vs. strain and strain rate 

at 4 strain amplitudes from the linear into 

the nonlinear region are shown. In the linear 

region I, the stress vs. strain and strain rate 

represent ellipsoids. The elastic stress σ’(γ
(t)), in phase with the strain and the viscous 

stress σ”(g(t)), in phase with the strain rate 

are unique functions and represent straight 

lines through the origin. With increasing 

strain the ellipsoids are tilted. The elastic 

and viscous stress remain unique functions, 

but they cannot be represented by a straight 

line anymore. Higher order Fourier coeffi-

cients are necessary to describe the viscous 

and elastic stress. 

 In figure 4 the phase of the higher har-

monic stress contributions is plotted vs. 

strain amplitude. The harmonic phase is the 

phase, referred to the fundamental stress. 

The new time reference is established ac-

cording to Neidhöfer et al. by substituting t 

by t’− φ/ω  for the measured stress respon-

se11. The stress in eq. 2 can be reformulated 

as: 

   

 (6) 

 

with      

(n=1 refers to the fundamental frequency, 

ω is the excitation frequency). The phase of 
the dominating 3rd harmonic is significant 

for the symmetry of the experimental stress 

waveform. A harmonic phase Φ3 of 270
o (-

90o) tilts the waveform backwards with a 

shoulder to the left11. A harmonic phase Φ3 

of 0o restores the symmetry of the wave-

form, but reduces the amplitude maximum 

and flattens the stress maximum to a broad 

plateau. 

Even harmonic contributions of the stress 

response are not expected since the stress 

response is symmetric with respect to the 

shear strain or shear rate, which means that 

the material’s response is the same in both 

shear directions. The magnitude of the 2nd 

harmonic in figure 5 however shows a 

small sharp peak at the onset of the non-

linear behavior and a broader peak at higher 

strain amplitude. The contribution of the 2nd 

harmonic stress is indeed small (0.06%) in 

comparison to those of the odd harmonics 

(20%). Even harmonics can result from sec-

ondary flows13 or wall slip14. The latter is 

probably the reason for the appearance of 

the small 2nd harmonic contribution since 

no special precautions have been made to 

eliminate slip at the plate surface. 

Figure 4: Strain sweep of a Xanthan gum (4wt%) 
solution showing the dynamic modulus G’ and G” as 
well as the harmonic phase of the 3rd, 5th, 7th and 9th 
harmonic stress contributions 

Figure 5: Strain sweep of a  Xanthan gum (4wt%) 
solution showing the dynamic modulus G’ and G” as 
well as the relative magnitude of the 2nd harmonic 
stress contribution 
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Analysis of the results from the Sine 

Transient experiments 

Time dependent stress and strain data 

have been collected at discrete stain ampli-

tudes of 1%, 3%, 6.3%, 10%, 30%, up to 

6300%. The Fourier coefficients G’n, G”n 
were calculated from the magnitude and the 

phase of the harmonic stress contributions 

obtained from discrete Fourier transforma-

tion of the stress and strain waves. In order 

to compare with the results of the strain 

sweep experiments, the Fourier coefficients 

were also calculated from the magnitude 

and phase determined by the rheometer ac-

cording to: 

    

 

Figure 6:  Comparison of Storage and Loss modulus 
determined in the strain sweep experiment with the 
first order Fourier coefficients obtained from the DFT 
and MITLAOS programs of the raw stress and strain 
signals. 

Figure 7: 3rd harmonic Fourier Coefficients G’3, G”3 as 
a function of the strain amplitude 

 

 

 

 

 

(7) 

with  

δn is the phase referred to the fundamental 

strain,  φn, φs the experimental phases of the 

harmonic stress contributions and the strain. 

The Fourier coefficients were also calcu-

lated from the Chebyshev coefficients de-

termined with the MITLAOS(*) program, 

developed by Ewoldt et al. 9 according to 

equation 4. 

The first order Fourier coefficients repre-

sent the linear viscoelastic storage (G1’) and 

loss (G1”) modulus and are plotted in figure 

6 as a function of the strain amplitude. The 

results calculated using the DFT and  MIT-

LAOS programs agree very well with the 

data from the strain sweep experiments. 

This is to be expected as the same Xanthan 

gum sample was tested under merely the 

same experimental conditions. 

Figure 7 is the same plot for the 3rd Fou-

rier coefficient. Similar to the results for the 

1st Fourier coefficients, excellent agreement 

has been obtained  for G’3, G”3  using the 3 

evaluation methods (Correlation, DFT and 

MITLAOS). In the linear region, below 

20% strain, the contributions of the 3rd har-

monic are zero. At the onset of the nonlin-

ear behavior, G’3 increases to a maximum at 

30% strain and then rapidly decreases to 

negative values to reach its minimum value 

at approximately 100% strain. This means 

that the elastic Chebyshev coefficient e3, 

initially becomes negative and turns posi-

tive at higher strain amplitude (Note, the 

sign changes for the 3rd harmonic contribu-

tion in eq. 4.). A positive 3rd Chebyshev 

coefficient provides an increase of the 
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maximum elastic stress, which stands for an 

“intra-cycle” strain stiffening effect 4. 

The viscous Fourier coefficient G”3 

slightly drops to become negative at the on-

set of the nonlinear behavior and increases 

significantly to a high positive maximum 

value around 50% strain, followed by a 

sharp drop to a negative minimum at ap-

proximately 200% strain. The viscous Che-

byshev coefficient v3 is directly propor-

tional to the viscous Fourier coefficient. A 

positive viscous Chebyshev coefficient v3 
represents intra-cycle shear thickening, an 

increase of viscous energy dissipation. This 

effect disappears with increasing strain and 

is replaced by intra-cycle strain-stiffening, 

an increase of the elastic response of the 

material. The negative minimum in v3  at 

200% strain suggest a strain shear thinning 

effect, the viscous dissipation slows down 

and the viscous 3rd harmonic contributions 

approach zero above 10 strain units. 

Reporting the elastic and viscous modulus 

for various harmonics is confusing, as can 

be seen from figure 8. The higher order co-

efficients follow the trend of the 3rd order 

Fourier coefficients. The intensity of G’n 

and G”n decreases with increasing order, but 

no further insight is provided. Simple pa-

rameters combining the effects of all rele-

vant Fourier coefficients, namely  an elastic 

strain-stiffening/softening (S) and an vis-

cous shear-thickening/thinning (T) ratios 

Figure 9: Elastic strain-stiffening/softening and vis-
cous shear-thickening/thinning ratio for the 4wt% 
Xanthan gum gel during the transition from linear to 
nonlinear behavior . 

have been defined by Ewoldt et al. 5. 

   

 

 

 

 

 (8) 

G’M is a minimum-strain and G’L a large-

strain modulus representing local inter-

cycle variations of the elastic behavior be-

tween small and large instantaneous strain. 

At the limit of small strain, G’M and G’L 

converge to the linear viscoelastic modulus 

G’. Along the same concept does η'M repre-
sent the minimum shear viscosity and η'L a 
large strain rate shear viscosity. In the linear 

region both S and T are equal to zero. S>0 

corresponds to intra-cycle elastic stiffening 

and S<0 to intra-cycle softening. T>0 repre-

sents viscous intra-cycle shear thickening, 

T<0 intra-cycle shear thinning 

Figure 9 shows for the Xanthan gum solu-

tion the variation of the strain stiffening/

softening and the shear thickening/thinning 

ratio during the transition from low to large 

amplitude strain i.e. linear to nonlinear be-

havior. 

At the onset of the nonlinear behavior, the 

Xanthan gum thickens (T>0), paralleled 

with a slight elastic softening (S<0). Be-

yond 40% strain, the material stiffens 

abruptly and S reaches a value of ~ 1.5; the 

Figure 8: The elastic and viscous Fourier coefficients 
for all odd harmonics of the order 3 to 9 are shown 
as a function of strain. The significance decreases 
with increasing order 
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elastic contribution in the material increases 

sharply as the material is strained further. 

At the same time the shear thickening/

thinning ratio T decreases and falls below 0 

at 200% strain. Between 100 and 500% 

strain, S remains constant, although exhibit-

ing strong variations at high level. Beyond 

500% strain, S decreases along with T; at 

this point the gel structure deteriorates very 

fast. A viscous thickening at the beginning 

of the nonlinear region can be expected 

from the peak in the loss modulus G”1. Not 

apparent form the storage modulus G’1 

however is the strong elastic stiffening of 

the gel before the gel structure breaks apart. 

It should be noted, that the behavior of the 

elastic stiffening/softening ratio S follows 

the relative magnitude of the third order 

harmonic contribution in figure 3. 

With the concept of intra-cycle elastic and 

viscous variations, the transition from linear 

to nonlinear behavior can be probed in 

more detail and structural changes investi-

gated. 

CONCLUSION 

The capability to perform highly accurate 

LAOS experiments on a commercial SMT 

(Separate Motor and Transducer) has been 

demonstrated. Expanding standard correla-

tion techniques to provide not only the fun-

damental but also high order harmonic con-

tent in terms of magnitude and phase has 

proven to be an accurate and fast tool to 

analyze the nonlinear stress response. A 

typical viscoelastic gel, the 4wt% Xanthan 

gum solution has been tested and analyzed 

using the extended correlation technique. 

The raw strain and stress waveforms of the 

experiments were also analyzed using com-

monly used DFT techniques and a decom-

position method proposed by Cho et al.3. 

Excellent agreement has been obtained be-

tween the 3 evaluation methods. Finally the 

results, represented here by the higher order 

Fourier coefficients G’n and G”n were inter-

preted in terms of elastic and viscous dissi-

pation effects. Structural changes during the 

transition from linear to highly non linear 

behavior could be investigated in more de-

tail. 
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