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FUNDAMENTALS 

Rheology of polymer melts 4, 35 

Strain and stress  
The mechanical behavior of a material 

is described by the constitutive equation 
which relates stress and deformation his-
tory. The state of stress is given by the 
stress tensor:  

      (1) 
σij is the stress component which acts 

on the surface i in direction j. 

For i # j, σij are shear stress compo-
nents, for i = j σij are normal stress compo-
nents. Tension stresses are positive, pres-
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sure stresses is negative. The stress tensor is 
symmetric, ie. σij = σji. 

The deformation state at infinitesimal 
deformation is defined by the strain tensor 
on a surface i in direction j:  

          (2) 
X(X1, X2, X3) is the position of a mate-

rial particle at time t=0; u(u1 ,u2, u3) is the 
displacement vector. 

The strain tensor is symmetric. The 
main components describe the extension; 
the off-diagonal elements describe the shear 
deformations.     
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Figure 1.2 simple extension Figure 1.1 simple shear  
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In simple shear (Figure 1.1), a force F is 
applied tangentially at the surface A of a 
body. The shear stress is defined as σ21 = F/
A. The stress tensor for infinitesimal simple 
shear simplifies to:  

      (3) 
with σii = -p* the hydrostatic pressure. 

The material generates normal stresses 
if subjected to finite shear deformations: 

N1 = σ11-σ22 # 0   and N2 = σ22 - σ33 # 0   
                                                                 (4) 

The strain tensor is defined for simple 
shear is:  

       (5) 

 
In simple extension ( Figure 1.2) a force 

F acts perpendicularly on the surface A. The 
stress tensor is only defined by the normal 
stress components. All shear stress compo-
nents are zero.  

      (6) 
 In directions X2 and X3, only the hydro-
static pressure is applied;  as such σ22 = σ33 
= -p*. Since the hydrostatic pressure super-
poses on the normal stress components, the 
stress applied to a body is:  

      (7) 
For an infinitesimal extension, the com-

ponent of the strain tensor ε11 is equivalent 
to the Cauchy strain εC. 
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       (8) 
If incompressibility can be assumed, the 

strain stress component normal to the main 
direction, become: 

        (9) 
By combining (8) and (9), the strain ten-

sor for simple strain reduces to: 

     (10) 
The constitutive equation for an incom-

pressible Hookean body is given by:  

                   (11) 
G is the shear modulus. With (4), (5), 

(11 ) the shear stress for a Hookean body in 
simple shear reduces to: 

         (12) 
In simple extension the applied stress is: 

                                          (13) 
E = 3G is the elasticity modulus for an 

incompressible Hookean solid. 

The constitutive equation of a Newto-
nian fluid an equation relating stress and 
strain rate: 

                             (14) 
η is the shear viscosity. f is the time 

derivative of the strain tensor. For non 
curved stream lines, the components of the 
strain rate tensor simplify to:  

    (15) 
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The stresses in shear and extension in 
simple shear resp. extension reduce to: 

   (16) 
and 

                                                                (17) 

ηE=3η  is incompressible the elonga-
tional viscosity for an Newtonian fluid. η is 
the shear viscosity 

Polymer melts are viscoelastic fluids, 
i.e. their rheological behavior can be de-
scribed by time-dependent material func-
tions. For infinitesimal deformation, the 
response of the material to consecutive 
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changes of the strain can be added linearly 
(superposition). The material behavior can 
be described by linear differential equations 
(linear viscoelasticity). The constants of 
proportionality of the Hookean body (E; G) 
and the Newtonian fluid (ηE; η ) are ex-
tended to time dependent functions. 

The constitutive equation for a linear 
viscoelastic body is: 

 (18) 
For a linear viscoelastic fluid, G(∞ ) = 

0, partial integration gives: 

   
                                                                (19) 
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Figure 1.3. Table with key basic test modes 

Input: 
 
γ(t)=γ0h(t) 
 
 
 
 
 
σ(t)=σ0[h(t)-h(t-t1)] 
 
 
 
 
 
g(t)=g0[h(t)-h(t-t1)] 
 
 
 
γ(ω)=γ0sinωt 

0 t
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Output: Materialfunction: 
 
G(t)= σ(t)/γ0 
 
 
 
 
 
J(t)=γ(t)/σ0 
 
 
 
 
 
η(t)=σ(t)/g0 
 
 
 
G‘(ω)=(σ0/γ0)cosδ 
G“(ω)=(σ0/γ0)sinδ 
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m(t - t') = dG(t -t')/dt' is a memory 
function. 

In order to determine the relation be-
tween deformation and stress a number of 
basic tests are performed. The response of 
the material to step and oscillatory deforma-
tion is measured. Figure 1.3 summarizes the 
key basic tests used to determine the linear 
viscoelastic material response. In the fol-
lowing, these tests are described in detail. 

Relaxation  
During a relaxation test, the material is 

subjected to a step shear strain at the time t 
= 0. 

         (20) 
The response of the material, the stress 

σ(t), is a decreasing function with time. The 
relaxation modulus is defined as: 

                   (21) 
G(t) is a monotonic function. G(t→o) = 

G0 is the glass modulus; G(t→∞) = Ge is 
the equilibrium modulus which is zero for 
thermoplastic. For infinitesimal deforma-
tion, i.e. if γo → 0 , G(t) becomes independ-
ent of γo. 

Oscillatory shear  
In oscillation experiments the material 

functions are frequency dependent. The ma-
terial is subjected to a sinusoidal shear de-
formation: 

       (22) 
With γ21 representing the amplitude and 

ω the angular frequency (Figure 1.3). The 
shear stress response is given by :  

      (23) 
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with σ21 is the shear stress amplitude 
and δ the phase shift. The material function 
G*(ω) is defined as : 

(24) 
G' is the storage modulus; G" the loss 

modulus; G"/G' = tgδ  is the loss factor. 

Step strain rate  
In a step strain rate test, the deformation 

rate is stepped from zero to γ0 at t = 0 (Fig. 
1.3). 

     25) 
The response of the material to the 

strain rate step is the stress σ(t). The mate-
rial function is the time dependent viscos-
ity : 

        (26) 
The linear viscoelastic viscosity function is 
independent of g0. 
 

Relaxation spectrum, Moments of the 
relaxation time spectrum 

The relaxation behavior of polymers 
can be simulated using a Maxwell-model 
which is represented by a Hookean spring 
and a Newtonian damping element. The 
relaxation shear modulus described by this 
model is: 

     (27) 
τ is the time of relaxation and is the ra-

tio of the viscosity of the damping element 
and the elasticity modulus G of the spring. 

For an oscillation deformation, the loss 
and storage moduli to can be calculated ac-
cording to: 
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        (28)&(29) 
The real relaxation behavior, however 

cannot be described by a single Maxwell-
model. A general Maxwell model is ob-
tained by combining n elements in parallel. 

The relaxation modulus as well as the 
storage and loss moduli extend to:  

  
    (3), (31), (32) 
      with {Gi,τi} the discrete relaxation spec-
trum. 

Replacing Gi(τi) = g(τ)dτ and the sum-
mation with the integral, the relaxation 
modulus changes to:  

 (33) 
As the relaxation time extends over a 

wide range, use of a logarithmic time axis is 
preferred:  

  
                 (34); (35) 

 The storage and loss moduli are: 

 
           (36); (37) 
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     (38) 
G0= zero moment of the relaxation 

spectrum. 

Integration of the modulus G(t) gives a 
viscosity: 

           (39);(40) 
If t→∞ ; η (t→∞) equals the zero shear 

viscosity: 

  (41) 
η0 = first moment of the relaxation 

spctrum. 

The step strain rate test is most advanta-
geous for the determination of the relaxa-
tion time spectrum at long times as the 
spectrum is weighted with the relaxation 
time. 

From (37), the first moment of the re-
laxation time spectrum is obtained for ω
→0: 

    (42) 
The second moment of the relaxation 

time spectrum is derived from the storage 
modulus (36) for ω→0: 

  (45) 
Creep test  

The response of a material to a shear 
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        (44) 
J(t) can be separated into three parts: 

      (45) 
With Jo = time independent elastic com-

pliance; Jd = retarded compliance; Ψ(t) = 
creep function with Ψ(0) = 0 and Ψ(∞)= 1 
and η0 the zero shear viscosity. 

Recovery 
If a linear viscoelastic material is sub-

jected to a constant stress σo at the time t=0 
and unloaded at t = t1 the recovered defor-
mation γr(t)(Figure 1.3) 31is: 

       (46), (47), (48), (49), (50) 
If steady state flow has been obtained in 

creep, i.e. Ψ(t1)=Ψ(t) = 1, equation (50) 
reduces to: 

      (51) 
The recovered strain for t→∞ is the to-

tal recoverable strain γR(t1) at time t1: If no 
steady state flow has been obtained during 
creep (Ψ(t1)#1), γR reduces for t→∞  

     (52) 
If steady state flow is obtained during 

creep, γR(t1) reduces for t→∞ to: 

     (53) 
The steady state compliance Je is the 

sum of Jd and Jo . 
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Retardation time spectrum  
The creep behavior of the material can 

be represented by the general Voigt-Kelvin 
model. The compliances for elongation and 
shear can be derived as follows:  

         (54) 
τi is the retardation time of the element i 

of a series of n elements. 

All {Ji;τi} pairs represent the discrete 
retardation spectrum. f(τ)dτ is the continu-
ous function of the retardation time spec-
trum. Equation (54) can be rearranged: 

         (55) 
Introducing a logarithmic time scale, 

dlnτ goes to L(dlnτ) and (55) can be rear-
ranged to: 

         (56) 
This equation defines the continuous 

retardation spectrum L(lnτ). The total re-
coverable compliance is  JR(t) = J(t) - t/ηo. 

If t →∞ and J = 0:  

    (57) 
Je is the steady state compliance.   

Je is the zero moment of the retardation 
time spectrum. 

Je can also be determined from the mo-
ments of the relaxation spectrum /4/:  
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Non-viscoelastic behavior  
The linear viscoelasticity is only valid 

for infinitesimal deformations. In order to 
describe finite deformations, the relative 
Finger tensor C-1(t') is used:  

     (59) 
xi and x’j are material coordinates of the 

same element at time t'>t0 and at the refer-
ence time t. 

For finite deformations, Lodge intro-
duced the rubber-like liquid model de-
scribed by the following constitutive equa-
tion : 

     (60) 
For simple shear, the relative Finger 

tensor is reduced to: 

     (61) 
with the relative shear: 

       (62) 
This model exhibits a first normal stress 

difference N1 = τ11 - τ22 which varies with 
the shear deformation squared. 

The first normal stress function θ1(t) 
can be obtained using (60): 

            (63) (64) 
The first normal stress function  θ1(t) 

reduces for t→∞ (steady state flow) to:  

 (65) 
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θo is independent of shear rate and is 
proportional to the second moment of the 
relaxation spectrum. Comparing (65) and 
(43 ) gives: 

        (66) 
AG is obtained from the theory of linear 

viscoelasticity. θo = 0 for the linear viscoe-
lasticity. 

θ1(t) # 0 and especially N1 ~ g2 are valid 
for second order fluids like the rubber like 
liquid model. 

For a simple elongation, the relative 
Finger tensor is: 

         (67) 
εH(t' t) is the relative Hencky elongation 

between time t and t'. The constitutive 
equation by Lodge is an extension of linear 
viscoelasticity and describes the first nor-
mal stress difference in simple shear and 
the extensional viscosiy in simple elonga-
tion. In the limit of infinitesimal deforma-
tion, it reduces to the constitutive equation 
of the linear viscoelasticity. 

Temperature dependence4  
Viscoelastic functions are not only func-
tions of time, but also of temperature. 
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Figure 1.4  Modulus as a function of temperature 
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Below the glass transition temperature, 
the configuration of the polymer chain 
backbones are largely immobilized and the 
viscoelastic properties characterizing the 
polymer system do not change significantly 
with time or frequency. In the transition 
zone between glass-like and rubber-like 
consistency, the dependence of viscoelastic 
functions on temperature is most remark-
able. In the rubber and flow region, linear 
viscoelastic functions are strongly depend-
ent on frequency and time. Cross-linked 
materials don't exhibit a flow region. 

Any attempt to analyze the temperature 
dependence at constant frequency or time 

  (68) 
Instead of representing G(t,T) in a three 

dimensional plot, the two curves G(t,To) 
and aT(T) are sufficient to describe the ma-
terial behavior as a function of time and 
temperature. 

The practical advantage of the t-T su-
perposition is the possibility to determine a 
wide range of frequency resp. time depend-
ence at a constant temperature which would 
never be accessible experimentally at a sin-
gle temperature.  

For amorphous materials, Williams, 
Landel and Ferry developed an empirical 
equation to predict aT This equation holds 
for most unfilled materials. 

  (69) 
Note: Because of the temperature de-

pendence of the specific volume, the 
modulus has to be corrected for T-effects: 

     (70) 
This correction can very often be ne-

glected. For semi- crystalline materials, the 
Arrhenius relation holds for aT at higher 
temperatures: 
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by seeking an analytical form for the 
modulus G(T) resp. G*(T) would lead to 
very complicated results. Instead, the 
method of reduced variables is used. 

This method, very often referred to as 
Bolzman superposition principle or t-T su-
perposition principle, has been developed 
empirically. 

The shear modulus G(t) at T = constant 
shows similar behavior as the shear 
modulus G(T) at a given time t in the loga-
rithmic plot of figure 1.5. If G(log t) curves 
are shifted along the time axis, the curves 
obtained at different temperatures super-
pose. 

The shift along the logarithmic time 
axis generates a shift factor aT resp. log aT. 

For a thermo-rheological simple body, 
all relaxation times shift by the same 
amount and aT is defined as: 

Fig. 1.5 Comparison of time and temperature de-
pendence of the modulus G(t) 
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      (71) 
Ea is an activation energy describing the 

temperature dependence of the material. 

Characterization of polymer structure3 12, 

37 

Molecular weighting molecular weight 
distribution 

The molecular weight distribution w(M) 
of a polymer represents the mass of the 
macromolecules with a molecular weight M 
relative to the total mass of all molecules. 

The average molecular weight Mw of the 
molecular weight distribution is the arith-
metic mean of the molecular weights: 

       (72) 
mi= mass of all molecules with the mo-

lecular weight Mi   

Instead of the mass the number of mole-
cules with the molecular weight M can be 
used. The number average molecular 
weight Mn of the molecular weight distribu-
tion is defined: 

      (73) 
ni = number of molecules with the mo-

lecular weight Mi  

NA = Avogadro number 

Using (72 ) and (73 ) , Mw can be rear-
ranged to: 

       (74) 
Other averages are the average z mo-

lecular weight distribution:  
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       (75) 
and the viscosity average: 

       (76) 
For a monodisperse distribution, all av-

erages of the molecular weight distribution 
are the same. For polydisperse distributions, 
the values of the averages increase as fol-
lows: 

      (77) 
The ratio of the different averages of the 

molecular weight distribution are used to 
characterize the polydispersity. The most 
important parameter of polydispersity is: 

       (78) 
When U→0 for monodisperse polymers 

(Mw = Mn), the zero moment of the molecu-
lar weight distribution is: 

       (79) 
The first and second moments of the 

molecular weight distribution are: 

     (80) (81) 
The (-1) moment is the inverse of the 

number average molecular weight: 

     (82) 
The shape and the width of the molecu-

lar weight distribution are determined by 
the kinetics of the polymerization reaction. 
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The most important distribution func-
tions w(M) describing experimentally found 
molecular weight distributions are: 

The Schultz-Flory normal distribution 
with the coupling ratio k': 

     (83) 
with a = k'/Mn   and Γ being the gamma 

function. 

If k'= 1, the polymerization is started by 
monfunctional initiators. The termination 
occurs only through disproportion reac-
tions. The broadness of distribution is U = 1 

If k'= 2, the termination is caused by 
recombination and U = 0.5 

The Poisson distribution: 

)1'(
)exp()(

'1'

+Γ
−

=
+

k
aMMaMw

kk

      (84) 
ν' is the kinetic chain length. 

The Poisson distribution is the result of 
a polymerization with constant number of 
growing chains. The reactivity of the chain 
is independent of chain length. All chains 
start growing at the same time and no chain 
termination occurs i.e. anionic polymeriza-
tion). The broadness of the distribution fol-
lows as: 

       (85) 
With increasing extent of polymeriza-

tion Pn , the distribution becomes narrower 
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Table 2.1 Mc, M'c and Me for different polymers 10 

Mc , M'c = critical molecular weights Me = molecular weight between entanglements Me = gNRT/GeNgN being a 
front factor /4/ . 
 

Polymer Mc M'c Me 
PS 31200 130 000 18 100 
poly(a-methyl-
stryrol) 

13 500 104 000 
  

13 500 

PE 3 800 ( 14 400) – 
PMMA 27 500 >150 000 5 900 
      (10 000) 
PIB 15 200 - 8 900 
PVAc 24 500 86 000 12 000 

Figure 2.1 Variation of the zero shear viscosity and the steady state compliance with the weight average mo-
lecular weight Mw for narrow-distributed  
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RELATION OF POLYMER STRUCTURE 
AND RHEOLOGICAL BEHAVIOR OF 
THERMOPLASTICS  

Molecular weight distribution of linear 
polymers  

Influence on zero-shear viscosity and 
steady state compliance  

A) Polymers with narrow molecular weight 
distribution (quasi mono/disperse Mw = 
Mn ) 

Figure 2.1 represents the zero shear vis-
cosity and the steady state compliance as a 
function of the weight average molecular 
weight for narrow-distributed polymers. 
The double logarithmic plot shows the zero 
shear viscosity increasing linearly with a 
slope of 1 as a function of Mw before con-
tinuing the ascent above Mc, on a straight 
line with a slope of 3.4 2, 10,17, 32. The inter-
section of the two extrapolated straight lines 
is the critical molecular weight Mc (cf. Ta-
ble 2.1). 

Mc is independent of temperature and 
for most polymers is equivalent to a mo-
lecular weight corresponding to a chain 
length of 300 to 500 main chain atoms 10. 
The strong increase of the zero shear vis-
cosity with the molecular weight above Mc 
is  due  to  s t rong interact ions 

(entanglements) between the polymer 
chains. 

The steady state compliance of narrow-
distribution polymers is proportional to Mw 
below a critical molecular weight M'c. Be-
yond M'c,  Je is independent of the molecular 
weight (Figure 2.1.) 

The value of Je for polystyrene with a 
polydispersity of Mw/Mn-1 = 0.1 is 1.6 x 105 
m2/N 10,27. Critical molecular weight values 
M'c for various polymers are compiled in 
table 2.1. 

B) Polydisperse polymers ( Mw > Mn)  
For polydisperse polymers, the zero 

shear viscosity varies with the weight aver-
age molecular weight Mw for narrow-
distributed polymers. Tests with PMMA, 
PS and PE show that the zero shear viscos-
ity is independent of the breath of the distri-
bution. More careful comparison of the zero 
shear viscosity for different distributions 
(i.e. bimodal, bimodal) shows that the de-
pendence on molecular weight Mw is only 
approximate. It has to be concluded that no 
average molecular weight is able to de-
scribe the dependence of the zero shear vis-
cosity for all kinds of distributions 32. 

Contrary to the zero shear viscosity is 
the steady state compliance highly depend-
ent on the polydispersity of polymers. 

Table 2 .2 lists some relations between 
the steady state compliance Je and the mo-
lecular weight distribution, proposed by 
various authors. Ferry 5 developed the rela-
tion (1) based on the Rouse-theory. Je is de-
pendent on molecular weight. This is in the 
range beyond M'c contradictory to experi-
mental results  

Mills18 and Zosel45 correlated the steady 
state compliance with the relation of the 
second moment and the first moment 
squared of the molecular weight distribu-
tion ( MzMw/Mw

2). This relation between the 
moments of molecular weight distribution 
corresponds to the same relation between 

 (1) Ferry 5 
  

  w
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Table 2 .2  Correlation between the steady state 
compliance and the average values of molecular 
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the moments of the relaxation spectrum. 
The difference between he exponents of the 
relations (2) and (3) indicate that the corre-
lation of Je with the average molecular 
weights has only restrictive validity. This is 
also true for the relation (4) developed by 
Agarwal 1 although he uses a large number 
of published results to support the empirical 
relation. 

Influence on linear viscoelastic moduli 
and compliances 

The modulus G(t) as well as the compli-
ance J(t) are linear viscoelastic functions in 
time. The frequency dependence is repre-
sented by the storage modulus G’(ω) and 
the loss modulus G”(ω). In the double loga-
rithmic plot (Fig. 2 .2 ) , the shear modulus 
G(t) decreases starting from the glass transi-
tion temperature ( modulus Go), leveling off 
into the rubbery plateau which is independ-
ent of time and molecular weight for poly-
mers with Mw > Mc 19 , 20 , 36. 

Beyond the plateau – the modulus fur-
ther decreases (terminal zone). The latter 
depends on molecular weight and with in-
creasing molecular weight shifts towards 
longer time. The value of the plateau 
modulus GeN is independent of molecular 
and, in the case of polystyrene, amounts to 
2 x 105 N/m2 2, 5. The theory of rubber elas-
ticity allows the calculation of an average 
molecular weight Me between entangle-
ments from GeN 4. Table 2.1 gives values of 
GeN for various polymers. 

Starting from a glassy state, the compli-
ance J(t) increases, and for polymers exhib-

its a rubber plateau when Mw > Mc. The 
value of rubber plateau JeN is equivalent to 
the inverted value of GeN 3, 27. 

Beyond the plateau zone, J(t) further 
increases towards a straight line with slope 
1 (terminal zone). In the terminal zone, the 
polymer undergoes a purely viscous defor-
mation with a constant viscosity ηo. 

The recoverable compliance JR(t) (cf. 
Chapter 1, equation (57)) increases with 
time and for t→ ∞ equals the steady state 
compliance Je. With increasing molecular 
weight, the terminal zone for the compli-
ance J(t) shifts towards longer times. With 
increasing polymer polydispersity, the tran-
sition from the rubber to the terminal zone 
becomes wider. Furthermore, as shown by 
figure 2.2, the steady state compliance Je is 
much larger for polydisperse than for 
monodisperse polymers. For the storage 
modulus G'(ω) and the loss modulus G"(ω) 
the increase in molecular weight results in a 
shift of the terminal zones towards smaller 
frequencies (Figure. 2.2) 6,15,18. A rubber 
plateau appears for G'(ω), independently of 
molecular weight beyond Mc. The loss 
modulus shows a molecular weight depend-
ent maximum 25. 

With polymers having a broad molecu-
lar weight distribution, the shape and the 
height of the rubber plateau is less well de-
fined and the transition into the terminal 
zone covers a larger frequency range. 

Influence on non-linear behavior 
(viscosity function)  
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Figure 2.2 Typical evolution of modulus, compliance, storage and loss moduli for polymer melts. 
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At large deformation, resp. deformation 
rates polymer melts do not exhibit linear 
viscoelastic behavior any more. Above a 
critical shear rate, the steady state viscosity 
decreases. Dividing the steady state viscos-
ity with the zero shear viscosity and multi-
plying the shear rate with the zero shear vis-
cosity, reduces the viscosity curves for nar-
row-distributed polymers to a single master 
curve , independently of molecular weight 
η(gηo/ηo)t 9,39. This master curve, however 
is not independent of molecular weight dis-
tribution. For broad-distributed polymers, 
the viscosity function deviates from the lin-
ear behavior at lower shear rates. At high 
shear rates, the curves tend to meet again, 
independently of the molecular weight dis-
tribution. 

Mendelson et al. 16 defined a second shift 
factor XM=1/(ηog)0.35 for commercial poly-
mers. The reduced viscosity function η(hο

gXM)/ηo describes the material behavior 
independently of molecular weight and mo-
lecular weight distribution. 

The extensional viscosity is three times 
the shear viscosity at low deformation rates. 
Whereas the shear viscosity decreases 
above a critical strain rate, the elongation 
viscosity increases first and shows a maxi-
mum before decreasing. 

The maximum of the elongational vis-
cosity function ηE(f) depends strongly on 
branching. With increasing branching, the 
value of the maximum in ηE(f)  for a LDPE 
increases. No maximum appears at all for 
HDPE. A clear differentiation of branching 
and molecular weight distribution influ-
ences cannot be made. 

Influence of branching  

The influence of long-chain-branching 
on the zero shear viscosity and the steady 
state compliance has been systematically 
analyzed with comb and star shaped poly-
mers 7,11,13,14,40. For polymers with low mo-
lecular weight, the zero shear viscosity is 
lower for branched polymers than for linear 

polymers with the same molecular weight 
Mw. The zero shear viscosity of the 
branched polymers increases with molecu-
lar weight according to ηo-M3.4 14, of linear 
polymers according to ηo-M3.4 .  

Because of the stronger dependence on 
molecular weight of the zero shear viscosity 
of the branched polymers, the zero shear 
viscosity for these polymers becomes larger 
than the one for the linear polymers having 
the same molecular weight Mw /7/. 

The lower viscosity of the branched 
polymers with small molecular weight is 
due to lower drag flow of the polymer coils, 
due to the smaller radius of gyration of the 
branched molecule, compared to the linear 
molecule with the same molecular weight. 
At higher molecular weight, the branches 
cause a stronger entanglement resistance 
which explains the stronger dependence of 
the viscosity on molecular weight. 

The steady state compliance Je is also 
independent of molecular weight Mw start-
ing from a critical molecular weight for nar-
row-distributed branched polymers. The 
absolute value of Je however, is much 
higher than for linear polymers. 

Contrary to long-chain-branches, short-
chain-branches have hardly any influence 
on rheological behavior 39. It has to be 
noted, however, that short-chain-branched 
polymers are much more dependent on tem-
perature than long-chain-branched poly-
mers4. 

Blending rules  

Binary blends 
In 1957, Ninimyia and Fujito20 devel-

oped a blending rule for the relaxation spec-
trum with the following assumptions:  

a) the molecular weight distribution is 
approximated by a multi-component 
blend 
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b) the relaxation spectrum of the com-
ponents is approximated by a box 
distribution;  

c) the relaxation spectrum of the blend 
is the sum of the spectra of the components 
weighted with their volume fraction. 

This simple blending rule, however, 
does not describe the real behavior of the 
polymer as it neglects the interactions be-
tween the various components. 

In order to analyze the non-linear be-
havior experimentally, Ninimyia2 measured 
the relaxation moduli of binary blends of 
narrow-distributed poly-vinylacetates and 
compared them with the moduli of the 
original components. To be able to describe 
the relaxation modulus of the blend Eb(t) he 
had to introduce a shift factor for the 
moduli of the components as well as a 
weighting factor wi (weight fraction). The 
shift factor λi of each component i was de-
termined experimentally. 

The analysis of the shift factors in rela-
tion to molecular weight distribution 
yielded a proportionality between λi and 
(Mw/Mi)a , a = 1, if the molecular weight of 
the component i < Mc and a = 2.4 for 
Mi>Mc

22. From the blending rule for E(t) 
the blending rules for the zero-shear viscos-
ity and the steady state compliance Deb can 

be derived. The viscosity ηEob calculated 
from the blending rule shows a the steeper 
increase for w2 << 1 than for w2->1, which 
is also in the experiment (table 2.3). The 
experimentally found steady state compli-
ance of the blend Deb(w2) shows a well-
defined maximum for w2 ~0.2 and in the 
logarithmic plot a slope -2 if w2->1. This 
result is contrary to the linear blending rule 
which gives a slope -1 for w2->1. 

Prest and Porter 28,29,30, Murakami and 
Bogue et al. established blending rules of a 
higher order which aim at a better overlap-
ping between experimental and calculated 
steady state compliance. 

Multicomponent blends. 

Ninimyia and Yasuda 24, 41 extended the 
linear blending rule for binary blends (table 
2/3) to multicomponent blends. The result-
ing equation contains as variables the shift 
factors λm and the relaxation time spectra 
Hm of the monodisperse polymer compo-
nent m. 

Zosel43 changed Ninomiya's blending 
rule substituting λm with (Mw/Mn)2. The re-
laxation time spectrum Hm was approxi-
mated by a box distribution with the pa-
rameters Ho and τmax.. Furthermore, he in-
troduced the empirical relation τmax~M3.4 
which means that each molecular weight is 
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related to one characteristic relaxation time. 
Zosel thus calculated the relaxation time 
spectrum as a function of the cumulative 
molecular weight distribution (table 2.4). 
To verify this blending rule, the molecular 
weight distribution was calculated from the 
experimentally measured relaxation spec-
trum and compared with data from GPC 
measurements. The agreement between ex-
perimentally and theoretically determined 
molecular weight distribution was unsatis-
factory. This is a very rudimentary model to 
calculate the molecular weight distribution 
from rheology. 

REMARKS 

The determination of the mechanical 
behavior of homologous polymer blends 
from the behavior of each component can 
only be approximative with these simple 
blending rules. Multi-component blending 
rules, using a box distribution with the pa-
rameters Ho and tmax to characterize the re-
laxation spectra of the monodisperse com-
ponent are to much of a simplification of 
the real fact. 

A blending rule predicting the mechani-
cal behavior of a polydisperse polymer 
starting from the molecular weight distribu-
tion has to take into account a relation be-

tween relaxation time and molecular 
weight. The experimentally determined 
maximum relaxation time is τmax~M3.4. If a 
blending rule is based on this relation, the 
assumption is implicitly made that each re-
laxation time is uniquely correlated to one 
molecular weight. 

This assumption however is only a 
rough approximation as the behavior of a 
monodisperse polymer cannot be described 
by only one relaxation time, but by a spec-
trum of relaxation times. In this case, each 
time constant characterizes a defined mo-
tion of the chain. 

REFERENCES 

1. AGARWAL, P.K.; A relationship be-
tween steady state shear compliance and 
molecular weight distribution. Macromole-
cules 12,2 (1979),342. 
2. CASALE, A.; PORTER, R.S.; Depend-
ence of flow properties of polystyrene on 
molecular weight, temperature, and shear. 
J..Macromol. Sci. - Revs. Macromol. Chem. 
C5,2(1979),387 
3. ELIAS H.-G.; Macromoleküle. Stuktur - 
|Eigenschaften - Synthesen - Stoffe. 3. Au-
flage. Basel, Heidelberg: Hüthig & Wepf 
1975. 
4. FERRY J. D.; Viscoelastic properties of 

Table 2.4 Multicomponent blends: relation between linear viscoelastic functions and molecular weight distribu-
tion 

a) NINOMIYA and YASUDA   

 
b) ZOSEL 88  

                                -         
Assumption: 

           and Hm is a box distribution with parameters Ho and τmax                
 

∫∫
∞∞

==
00

1    with  )/(ln()()(ln w(M)sMdMHMwH mm λττ

∫∫
∞∞

==
00

1    with  )/(ln()()(ln w(M)sMdMHMwH mm λττ

2

⎟
⎠
⎞

⎜
⎝
⎛=

m

w
m M

Mλ

∫
∫

∞

∞

=++=

−==

0

0

')'()(  and   )log2(log)(logwith 

)))((1/)()(ln

dMMwMWMbaM

MWHdMMwHH

w

oo

ττ

ττ



16 AAN028   V1 

polymers. New York: J. Wiley & Sons, 
Inc., Sec. Ed. (1970). 
5. FERRY, J.D.; WILLIAMS, M.L.; 
STERN, D.M.; Slow relaxation mecha-
nisms in concentrated polymer solution. J. 
Phys. Chem. 58 (1954), 987. 
6. FITZGERALD, E.R.; GRANDINE, 
L.D.; FERRY, J.D.; Dynamic mechanical 
properties of polyisobutylene. J. Appl. Phys 
24,5 (1953), 650  
7. JUJIMOTO,T.; NARUKAWA, H.; NA-
GASAWA, M.;Viscoelastic properties of 
comb-shaped polystryrenes. Macromole-
cules 3,1 (1970),57. 
8. De GENNES. P.G.; Reptation of a poly-
mer chain in the presence of fixed obsta-
cles. J. Chem. Phys. 55,2 (1971),572. 
9. GRAESSLEY, W.W.; SEGAL, L.; Flow 
behavior of polystyrene systems in steady 
shearing flow. Macromolecules 2,1 
(1969),49. 
10. GRAESSLEY, W.W.; The entangle-
ment concept in polymer rheology. Adv. 
Polymer Sci. 16 (1974). 
11. GRAESSLEY, W.W.; MASUDA, T.; 
ROOVERS, J.E.L.; HADJCHRISTIDIS, 
N.; Rheological properties of linear and 
branched polyisoprene. Macromolecules 
9,1 (1976),127. 
12. HOFFMAN, M.; KRÖMER, H.; 
KUHN, R.; Polymeranalytik. Bd.I und II 
Goerg Thieme Verlag, Stuttgart 1977. 
13. ISONO, Y.; FUJIMOTO, T.; INA-
GAKI , H.;   SHISHIDO, M.; NAGA-
SAWA, M.; Viscoelastic properties of 
branched polymers. I. AT the undiluted 
state. Polymer J. 12,2 (1980), 131. 
14. MASUDA, T.; OHTA, Y.; ONOGI, S.; 
Rheological properties of anionic poly-
stryrenes.  I I I Characterization and 
rheological properties of four-branched 
polystyrenes. Macromolecules 4,6 (1971), 
763. 
15. MASUDA, , T.; KITAGAWA, K.; 
INOUIE, T.; ONOGI, S.; Rheological prop-
erties of anionic polystyrenes. II Dynamic 
viscoelasticity of blends of narrow-
distribution polystyrenes. Macromolecules 
3,2 (1970), 116. 
16. MENDELSON, R.A.; BOWLES, W.A.; 

FINGER, F.L.; Effect of molecular struc-
ture on polyethylene melt rheology. II 
Shear-dependent viscosity. J. Pol. Sci. A-2 
8 (1970), 127. 
17. MILLS, N. J.; The rheological proper-
ties and molecular weight distribution of 
poly -dimethylsiloxane. European Polymer 
J. 5(1969), 675. 
/18. MILLS, N.J.; NEVIN, A.; Oscillatory 
shear measurements on polystyrene melts in 
the terminal region. J. Pol. Sci. A-2 9 
(1971), 267. 
19. NARKIS, M.; HOPKINS, I.L.; TO-
BOLSKY, A.V.; Studies on the stress re-
laxation of polystyrenes in the rubery-flow 
region. Pol. Eng. Sci. 10,2 (1979), 66. 
20. NINOMIYA, K.; FUJITA, H.; Stress-
relaxation behaviour of polyvinylacetate 
films J. Coll. Sci. 12 (1957) , 204. 
21. NINOMIYA, K.; Effects of blending on 
the stress- relaxation behavior of polyvi-
nylacetate in the rubbery region. J. Coll. 
Sci. 14 (1959), 49. 
22. NINOMIYA, K.; FERRY, J.D.; Phe-
nomenological relations for the viscoelastic 
properties of polymer blends of different 
molecular weight species. J. Coll. Sci. 18 
(1963), 421. 
23. NINOMIYA, K. ; FERRY, J.D.; OYA-
NAGI, Y.; Viscoelastic properties of poly-
vinylacetates. II Creep studies of blends. J. 
Phys. Chem. 67 (1963), 2297. 
24. NINOMIYA, K.; YASUDA, G.; Mo-
lecular weight dependence of relaxation 
spectra of amorphous polymers in the rub-
bery region. IV. Relationship between re-
laxation spectrum and molecular weight 
distribution estimated   from the empirical 
blending law for two-component systems. 
Rubber-Chemistry and technology 40
(1967), 493. 
25. ONOGI, S.; MASUDA, T.; KITA-
GAWA, K.; Rheological properties of ani-
onic polystyrenes. I. Dynamic viscoelastic-
ity of narrow - distribution polystyrenes. 
Macromolecules 3, 2 (1970), 109. 
26. ORBON, S.J.; PLAZEK, D.J.; Recover-
able Compliance of a series of bimodal mo-
lecular weight blends of polystyrene. J. Pol. 
Sci.: Phys. Ed. 17 (1979), 1871. 



17 AAN028   V1 

27. PLAZEK, D.J.; AGARWAL, P.; Com-
parison of similar narrow molecular 
weights polystyrenes. J. Appl. Pol. Sci. 22 
(1978), 2127. 
28. PREST, W.M. Jr.; Blending law for 
high molecular weight polymer melts. Poly-
mer J. 4,2 (1975), 163. 
29. PREST, W.M. Jr.; Viscoelastic proper-
ties of blends of ''entangled'' polymers. . J. 
Pol. Sci. A:-2 8 (1970), 1897. 
30. PREST,   W.M. Jr.; PORTER, R.S.; The 
effect of hight molecular weight compo-
nents on the viscoelastic properties of poly-
styrene. Polymer J. 4,2 (1973, 154  
31. RAIBLE, T.; Deformationsverhalten 
von geschmolzenem Polyaethylen im  Zug-
versuch bei großen Gesamtdehnungen. 
Diss. ETH Zurich Nr. 6751 (1981) 
32. RUDIN, A.; CHEE, K.K.; Zero shear 
viscosities of narrow and broad distribution 
polystyrene melts. Macromolecules 6,4 
(1973), 613. 
33. SEMJONOW, V.; Schmelzviskositäten 
hochpolymerer Stoffe.  Fortschritte der 
Hochpolymer-Forschung 5 (1968), 387. 
34. STUART, H.A.; Die Physik der 
Hochpolymeren. Band IV Springer Verlag. 
35. TOBOLSKY, A.V.; MURAKAMI, K.; 
Effect of polydispersity in polystyrene on 
stress relaxation. J.POI. Sci. 47 (1966), 55. 
36. VOLLMERT| B.; Grundriss der makro-
molekularen Chemie   Band I V;  E. 
Vollmert Verlag Karlsruhe (1980) 
37.WALSH, D.J.; HIGGINS J.S.; MICON-
NACIE. H.; Polymer blends and mixtures. 
NATO ASI Series; Series E: Applied Sci-
ences No. 89 Martinus Nijhoff Publishers, 
(1985). 
38. WANG, J.S.; KNOX, J.R.; PORTER 
R.S.; Steady state and dynamic rheology of 
poly-l-olefin) melts. J.Pol. Sci. : Phys. Ed. 
16 (1978),1709. 
39. WISSBRUN, K.F.; Non-uniqueness of 
determination of molecular weight distribu-
tion dependence of properties by blending 
experiments. Trans. Soc. Rheol. 21,1 
(1977), 149. 
40. WYMAN, D.P.; ELYASH, L.J.; FRA-
ZER, W.J.; Comparison of 
some mechanical and flow properties of 

linear and tetrachain branched 
"monodisperse'' polystyrenes. J. Pol. Sci. 
part A 3 (1965), 681. 
42. YASUDA, G.; HOMMA, T.; 
MIEKAWA, E.; NINOMIYA, K.; 
Molecular weight dependence of relaxation 
spectra of amorphous polymers in the rub-
bery region. VII. Comparison of experi-
mental relaxation spectra with those esti-
mated from molecular weight distribution. 
Rubber Chemistry and Technology 40 
(1967), 1470. 
43. ZOSEL, A. ; Der Einfluss von Moleku-
largewicht und Molekulargewichts-
verteilung auf die viskoelastichen Eigen-
schaften  von Polystyrolschmelzen. Rheol. 
Acta 10 (1971), 215. 


