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FUNDAMENTALS
Rheology of polymer melts %

Strain and stress

The mechanical behavior of a material
is described by the constitutive equation
which relates stress and deformation his-
tory. The state of stress is given by the

stress tensor:

(1
o, 1s the stress component which acts
on the surface i in direction ;.

For i # j, o; are shear stress compo-
nents, for i = j oy are normal stress compo-
nents. Tension stresses are positive, pres-

A F

>
>

Xq

Figure 1.1 simple shear

sure stresses is negative. The stress tensor is
symmetric, ie. o;; = 0.

The deformation state at infinitesimal
deformation is defined by the strain tensor
on a surface i in direction j:

Ou, .| Ou,  Ou, .| Ouy  Ou,
) + 7 T
ox, ox,  ox, ox,  ox,
1| Ou, N Ou, Ou, 1| Ouy N Ou,
’lox, ox, oxX, ’lox, oX,
1| O . Ouy | | %+ Ou, Ou,
lox, ox,| *lex, ox, oxX,
. .o, . (2)
X(X;, X5, X;) is the position of a mate-

rial particle at time /=0, u(u; ,u, u3) is the
displacement vector.

1)
I

The strain tensor is symmetric. The
main components describe the extension;
the off-diagonal elements describe the shear
deformations.
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Figure 1.2 simple extension
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In simple shear (Figure 1.1), a force F is
applied tangentially at the surface 4 of a
body. The shear stress is defined as oy; = F/
A. The stress tensor for infinitesimal simple
shear simplifies to:

o, o, 0
o=0y, 0y 0

0 0 oy 3

with o;; = -p* the hydrostatic pressure.

The material generates normal stresses
if subjected to finite shear deformations:

N] = O077-02 #0 anng = Oy - O33 #0

4)
The strain tensor is defined for simple
shear is:

0 37 O
&€= 3V 0 0
0 0 O
(5)
€y T & = ;68;12 TV
7, = tan a

In simple extension ( Figure 1.2) a force
F acts perpendicularly on the surface 4. The
stress tensor is only defined by the normal
stress components. All shear stress compo-
nents are zero.

o, 0 0
o= 0 oy 0
0 0 oy

(6)
In directions X, and Xj, only the hydro-
static pressure is applied; as such o, = o33
= -p* Since the hydrostatic pressure super-
poses on the normal stress components, the
stress applied to a body is:
oc=0,+p =0,-0,=F/4 %
For an infinitesimal extension, the com-
ponent of the strain tensor &;; is equivalent
to the Cauchy strain &c.

o _Aw AL

X, A, I

& 26
(®)
If incompressibility can be assumed, the
strain stress component normal to the main

direction, become:

Epn =& :%‘911 :%EC 9)
By combining (8) and (9), the strain ten-

sor for simple strain reduces to:

Ec 0 0
e=| 0 —Je&. 0
0 0 —J&c

(10)
The constitutive equation for an incom-
pressible Hookean body is given by:

oc=-p1+2Gs
B = (11)

G is the shear modulus. With (4), (5),
(11 ) the shear stress for a Hookean body in

simple shear reduces to:

0, =Gy, (12)

In simple extension the applied stress is:

0=0,,—0y, =2G(&,~&y,) =2G(&. +3 &)
o=3Gs,. =FEs,

(13)
E = 3G is the elasticity modulus for an
incompressible Hookean solid.

The constitutive equation of a Newto-
nian fluid an equation relating stress and
strain rate:

o=-pl+2n¢ 04

n is the shear viscosity. & is the time
derivative of the strain tensor. For non
curved stream lines, the components of the
strain rate tensor simplify to:

. 1 8 auj a”,' 1 8
E,=a—| —+——|=5—7,
ij 2 2 ij
or\ oX, 0dX, ot
| (15)
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The stresses in shear and extension in
simple shear resp. extension reduce to:

) 0 .
Oy =2n&y = 277%_721 =172
ot (16)

and

0 =0,,-0, =21, —&y)=2n(&, +%‘él1)
o =3néc =1yéc

(17)

ng=3n is incompressible the elonga-
tional viscosity for an Newtonian fluid. 77 is
the shear viscosity

Polymer melts are viscoelastic fluids,
i.e. their rheological behavior can be de-
scribed by time-dependent material func-
tions. For infinitesimal deformation, the
response of the material to consecutive

changes of the strain can be added linearly
(superposition). The material behavior can
be described by linear differential equations
(linear viscoelasticity). The constants of
proportionality of the Hookean body (E; G)
and the Newtonian fluid (77z; 7 ) are ex-
tended to time dependent functions.

The constitutive equation for a linear
viscoelastic body is:

, Lde(t)
O':—pl+2LG(t—t)Td

1

(18)
For a linear viscoelastic fluid, G(wo ) =
0, partial integration gives:
o=-pl+ 2jt m(t—1")e(t)— (") )t
(19)

Input: Output:

76):70h(0 Yo \

Materialfunction:

G()= o)/

JO)=nt)/oy

o(t)
"0
o(t)=oyp[h(t)-h(t-t;)] Sot
v(t)
0
Yo ]
o To o)
Q)= Yol h(t)-h(t-1,)]

20 n)=o(t)/y

N@)=ypsinwt

G (w)=(op/yy)coso

G"(@)=(ov/yysind

Figure 1.3. Table with key basic test modes
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m(t - t) = dG(t -t')/dt' is a memory
function.

In order to determine the relation be-
tween deformation and stress a number of
basic tests are performed. The response of
the material to step and oscillatory deforma-
tion is measured. Figure 1.3 summarizes the
key basic tests used to determine the linear
viscoelastic material response. In the fol-
lowing, these tests are described in detail.

Relaxation

During a relaxation test, the material is
subjected to a step shear strain at the time ¢
= 0.

0 (t<0)

1 (¢>0)
(20)

The response of the material, the stress

o(t), is a decreasing function with time. The
relaxation modulus is defined as:

y(t) = y,h(t)  with h(t):{

o)

Yo Q1)

G(t) 1s a monotonic function. G(t—o0) =

Gy is the glass modulus; G(t—x) = G, is

the equilibrium modulus which is zero for

thermoplastic. For infinitesimal deforma-

tion, i.e. if %, — 0, G(t) becomes independ-
ent of 7,

G(1) =

Oscillatory shear

In oscillation experiments the material
functions are frequency dependent. The ma-
terial is subjected to a sinusoidal shear de-
formation:

Va1 =V, explion) 22)

With y;; representing the amplitude and
o the angular frequency (Figure 1.3). The
shear stress response is given by :

0, =0, exp(i(at+9) (23)

with oy, is the shear stress amplitude
and o the phase shift. The material function
G*(w) 1s defined as :

G ()= 22 (@) G = G'+iG"
7(@) 24)

G' is the storage modulus; G"” the loss
modulus; G"/G' = tg§ is the loss factor.

Step strain rate

In a step strain rate test, the deformation
rate is stepped from zero to y at t = 0 (Fig.
1.3).

70 = 74l )

The response of the material to the
strain rate step is the stress of?). The mate-
rial function is the time dependent viscos-

1ty :

with  y(t) =yt

70 =2

The linear viscoelastic viscosity function is
independent of 7,

Relaxation spectrum, Moments of the
relaxation time spectrum

The relaxation behavior of polymers
can be simulated using a Maxwell-model
which is represented by a Hookean spring
and a Newtonian damping element. The
relaxation shear modulus described by this
model is:

() =29 - Gexp(-t/7)

Yo 27)

7 is the time of relaxation and is the ra-

tio of the viscosity of the damping element
and the elasticity modulus G of the spring.

For an oscillation deformation, the loss
and storage moduli to can be calculated ac-
cording to:
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T
G'(w)=G—2

+w°T
G(w) = Gﬁ

(28)&(29)

The real relaxation behavior, however
cannot be described by a single Maxwell-
model. A general Maxwell model is ob-
tained by combining n elements in parallel.

The relaxation modulus as well as the
storage and loss moduli extend to:

G(t) = i G, exp(—t/7)

i=1

G'(w) = ZGI

2 2

+

G"(w G,——
(@)= ,Z‘ 1+a)

(3), 31, (32)
with {G;, ;! the discrete relaxation spec-
trum.
Replacing Gi(7;) = g(7)dr and the sum-
mation with the integral, the relaxation
modulus changes to:

60 =EOL = [" g0y exp(-1/)d -

As the relaxation time extends over a
wide range, use of a logarithmic time axis is
preferred:

dint =dr/t; g(7)r = H(Inr)
G()=[H(Inye"dInc

(34); (35)
The storage and loss moduli are:

2_2

T
22dlnr
z-

G'(0) = f:H(ln 0

G"(w) = j H(nr)———dnz

(36); 37)
For t —0, (35) reduces to:

G(0)=G,=[ H(nz)dInz
- (38)

G/~ zero moment of the relaxation
spectrum.

Integration of the modulus G(?) gives a
viscosity:

0= 29~ ['Gnyar

Yo
= Ifwa(r)(l —exp(~t/7)dInz)Inz
(39);(40)
If t—o0 ; 77 (t—o) equals the zero shear
viscosity:

7, = lim n(t) = [TH@mD)wd Iz

700 (41)
ny = first moment of the relaxation
spctrum.

The step strain rate test is most advanta-
geous for the determination of the relaxa-
tion time spectrum at long times as the
spectrum is weighted with the relaxation
time.

From (37), the first moment of the re-

laxation time spectrum is obtained for @
—0:

lim &(@) _ | “H(nr)dInz =17,

w—0 I0) —00 (42)
The second moment of the relaxation

time spectrum is derived from the storage

modulus (36) for w—0:

lim (@)

w—0

Creep test

The response of a material to a shear
stress o(t) = o, h(t) at time ¢t = 0, is the
shear deformation y¢?) (Fig. 1.3). The mate-
rial function is the compliance J(?):

- wa(ln r)yr’dInt=4
(45)
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J(oy=2Y

7 (44)
J(t) can be separated into three parts:

J()=J, +J, (1) + /
s (45)

With J, = time independent elastic com-
pliance; J,; = retarded compliance; ##) =
creep function with ¥(0) = 0 and ¥(o)= 1
and 7y the zero shear viscosity.

Recovery

If a linear viscoelastic material is sub-
jected to a constant stress o, at the time =0
and unloaded at ¢ = ¢; the recovered defor-
mation y(#)(Figure 1.3) *'is:

7,.(t) = 0,J(t) _(O-OJ(t) —o,J(t _11))
J(t)=J,+J,¥@)+1, /1,
J@)=J,+J,¥Y(@)+t/n,
J@—t)=J,+J,Y(@E-1)+(@—1)/n,
7.(0) =o0,(Jy +J(Y () - YO +Y(-1))
(46), (47), (48), (49), (50)
If steady state flow has been obtained in

creep, i.e. (t;))=¥(t) = 1, equation (50)
reduces to:

7r(t):O'o(Jo+Jd\P(t1)) (51)

The recovered strain for t—oo is the to-
tal recoverable strain yz(?;) at time ¢;: If no
steady state flow has been obtained during
creep (¥(t;)#1), yz reduces for t—o0

7e(t) = }i_r)gyr(t_tl)
rr=0,(Jy+J, ¥ (1)) (52)

If steady state flow is obtained during
creep, Jx(t;) reduces for t—oo to:

Yr=00(Jy+J,) =04, (53)

The steady state compliance J, is the
sum of J; and J,, .

Retardation time spectrum

The creep behavior of the material can
be represented by the general Voigt-Kelvin
model. The compliances for elongation and
shear can be derived as follows:

J(0)=Jy+ . J(—exp(-t/z,)+1/7,

(54)
7; 1 the retardation time of the element i
of a series of n elements.

All {J; 7} pairs represent the discrete
retardation spectrum. f(z)dz is the continu-
ous function of the retardation time spec-
trum. Equation (54) can be rearranged:

T =J,( [ 7@ =exp(-t/ D) |+ 1/,

(55)

Introducing a logarithmic time scale,

dint goes to L(dIinz) and (55) can be rear-
ranged to:

J@)=J,+ (F:L(ln 7)(1—exp(—t/7))d In Z) +t/n,

(56)

This equation defines the continuous

retardation spectrum L(/nz). The total re-
coverable compliance is Jx(?) = J(1) - t/7,.

Ift 00 and J = 0:

Tyt >w)=J, = [ Lng)dInz
(57)
J. 1s the steady state compliance.

J. 1s the zero moment of the retardation
time spectrum.

J, can also be determined from the mo-
ments of the relaxation spectrum /4/:

J‘_MH (Int)r’dInt A,
= = —

+0o0 2
U_ H(In7)wd In r) To

e

(58)
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Non-viscoelastic behavior

The linear viscoelasticity is only valid
for infinitesimal deformations. In order to
describe finite deformations, the relative
Finger tensor C'(t') is used:

_ (¢ t
c'e), =% aaf' l((t')) gj k((z'))
o g (59)
x; and x’; are material coordinates of the
same element at time ">, and at the refer-

ence time 7.

For finite deformations, Lodge intro-
duced the rubber-like liquid model de-
scribed by the following constitutive equa-
tion :

p= —p*1+_[0tm(t—t')(=ft_l(t')dt'

- (60)
For simple shear, the relative Finger

tensor is reduced to:

L+p%(c,0) y(',0) 0

cl=| .0 L0
0 0 1
(61)
with the relative shear:
(@, 0)y=y@)—y() (62)

This model exhibits a first normal stress
difference N; = 17;;- 1, which varies with
the shear deformation squared.

The first normal stress function 6;(2)
can be obtained using (60):

_ T % 6!
0,(¢) == _2j0G(z)tdz

0,()=2[ H(nz)e*(1-(1+1/7)exp(~t/7))d Int

(63) (64)
The first normal stress function 6;(2)
reduces for t—oo (steady state flow) to:

0.t >=)=06,=2[ H(nz)r’dInz .

6, is independent of shear rate and is
proportional to the second moment of the
relaxation spectrum. Comparing (65) and
(43 ) gives:

00 —
s (66)

Ag 1s obtained from the theory of linear
viscoelasticity. 8, = 0 for the linear viscoe-
lasticity.

0,(t) # 0 and especially N, ~ 7 are valid
for second order fluids like the rubber like
liquid model.

For a simple elongation, the relative
Finger tensor is:

exple, (tt') 0 0
()= 0 exple,, (t1) 0
- 0 0 exple, (i)
(67)

gu(t' t) is the relative Hencky elongation
between time ¢ and ¢ The constitutive
equation by Lodge is an extension of linear
viscoelasticity and describes the first nor-
mal stress difference in simple shear and
the extensional viscosiy in simple elonga-
tion. In the limit of infinitesimal deforma-
tion, it reduces to the constitutive equation
of the linear viscoelasticity.

Temperature dependence*

Viscoelastic functions are not only func-
tions of time, but also of temperature.

S | Glass { Transiton | Rubber | Flow
> : i Plateau
3 ‘

T

Figure 1.4 Modulus as a function of temperature
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Below the glass transition temperature,
the configuration of the polymer chain
backbones are largely immobilized and the
viscoelastic properties characterizing the
polymer system do not change significantly
with time or frequency. In the transition
zone between glass-like and rubber-like
consistency, the dependence of viscoelastic
functions on temperature is most remark-
able. In the rubber and flow region, linear
viscoelastic functions are strongly depend-
ent on frequency and time. Cross-linked
materials don't exhibit a flow region.

Any attempt to analyze the temperature
dependence at constant frequency or time

log G(t)

Go(t,Ty)

log t/a; logt logt

Fig. 1.5 Comparison of time and temperature de-
pendence of the modulus G(t)

by seeking an analytical form for the
modulus G(7) resp. G*(T) would lead to
very complicated results. Instead, the
method of reduced variables is used.

This method, very often referred to as
Bolzman superposition principle or t-T su-
perposition principle, has been developed
empirically.

The shear modulus G(z) at T = constant
shows similar behavior as the shear
modulus G(7) at a given time ¢ in the loga-
rithmic plot of figure 1.5. If G(log t) curves
are shifted along the time axis, the curves
obtained at different temperatures super-
pose.

The shift along the logarithmic time
axis generates a shift factor ar resp. log ar.

For a thermo-rheological simple body,
all relaxation times shift by the same
amount and ar is defined as:

_ 2T _ m(T)
bon@) (@) .

Instead of representing G(¢,7) in a three
dimensional plot, the two curves G(t,T,)
and ar(7T) are sufficient to describe the ma-
terial behavior as a function of time and
temperature.

The practical advantage of the t-T su-
perposition is the possibility to determine a
wide range of frequency resp. time depend-
ence at a constant temperature which would
never be accessible experimentally at a sin-
gle temperature.

For amorphous materials, Williams,
Landel and Ferry developed an empirical
equation to predict ar This equation holds
for most unfilled materials.

T-T
log a,(T) = -8.86 ——— =
gar (1) 101.6+7 T,

I =T,+50
’ (69)

Note: Because of the temperature de-
pendence of the specific volume, the
modulus has to be corrected for T-effects:

T
G/, Ty) =P G(.T)
P (70)
This correction can very often be ne-
glected. For semi- crystalline materials, the
Arrhenius relation holds for ar at higher

temperatures:

10°

10° ] _ -40
] -20
10° + E
-10

10" 4 u 0

G(t) [Pa]

.
10" 5 -§ 30
] 40
10° o E 50
10° ] : | 75
¢ |3
s i 100
1.0 T T T T T T T T TR T T TR
10* 10° 10* 10° 10% | 10° 10" 10° 10° 10° 10°
Time t/a, [min] Time t [min]

Fig. 1.6 Master curve and shift factor
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a,(T)=Kexp(E,/RT
/(1) =K exp(E, | RT) o
E, 1s an activation energy describing the
temperature dependence of the material.

Characterization of polymer structure®*?
37

Molecular weighting molecular weight
distribution

The molecular weight distribution w(M)
of a polymer represents the mass of the
macromolecules with a molecular weight M
relative to the total mass of all molecules.

The average molecular weight M,, of the
molecular weight distribution is the arith-
metic mean of the molecular weights:

ZmiM ;
M — i
w Zmi
" (72)

m;= mass of all molecules with the mo-
lecular weight M;

Instead of the mass the number of mole-
cules with the molecular weight M can be
used. The number average molecular
weight M, of the molecular weight distribu-
tion is defined:

ZniMi Zmi
M, - ST
i K Z %\/[i
’ (73)

n; = number of molecules with the mo-
lecular weight M,

N4 = Avogadro number

Using (72 ) and (73 ) , M,, can be rear-
ranged to:

Z nM l.z

oo
" Zn[Mi
: (74)

Other averages are the average z mo-
lecular weight distribution:

ZZ,'Mi Zn,.Mi3

M =
: Z z, Z nM’
i i (75)
and the viscosity average:
)}
Z miMia A
M, = lz .
i (76)

For a monodisperse distribution, all av-
erages of the molecular weight distribution
are the same. For polydisperse distributions,
the values of the averages increase as fol-
lows:

M,<M, <M, <M,
(77)

The ratio of the different averages of the
molecular weight distribution are used to
characterize the polydispersity. The most

important parameter of polydispersity is:

n (78)

When U—0 for monodisperse polymers

(M,, = M,), the zero moment of the molecu-
lar weight distribution is:

j “w(M)dM =1

’ (79)
The first and second moments of the

molecular weight distribution are:

j: Mw (M)YdM =M,

["MPwMyam = MM,
0 (80) (81)
The (-1) moment is the inverse of the
number average molecular weight:

M Tw(M)YdM = V-
) it o

The shape and the width of the molecu-
lar weight distribution are determined by
the kinetics of the polymerization reaction.
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log 7,

1
Mc

log <M,>

log Je

1

M’

log <M,>

Figure 2.1 Variation of the zero shear viscosity and the steady state compliance with the weight average mo-

lecular weight M,, for narrow-distributed

The most important distribution func-
tions w(M) describing experimentally found
molecular weight distributions are:

The Schultz-Flory normal distribution
with the coupling ratio k"

a“"'M* exp(—aM)
T(k'+1)

w(M) =
(83)

with a = k'/M,, and 7 being the gamma
function.

If k'= 1, the polymerization is started by
monfunctional initiators. The termination
occurs only through disproportion reac-
tions. The broadness of distribution is U = 1

If k'= 2, the termination is caused by
recombination and U = 0.5

The Poisson distribution:

Table 2.1 M, M'.and M, for different polymers 10

v M exp(—v'")
(M —1)I(V'+1)

w(M) =
(84)
V' is the kinetic chain length.

The Poisson distribution is the result of
a polymerization with constant number of
growing chains. The reactivity of the chain
is independent of chain length. All chains
start growing at the same time and no chain
termination occurs i.e. anionic polymeriza-
tion). The broadness of the distribution fol-
lows as:

M, 1
V- [7 - lj Wi
’ (85)
With increasing extent of polymeriza-
tion P, , the distribution becomes narrower

Polymer M. M’ M.
PS 31200 130 000 18 100
poly(a-methyl- 13 500 104 000 13 500
stryrol)
PE 3 800 (14 400) —
PMMA 27 500 >150 000 5900

(10 000)

PIB 15200 - 8900
PVAc 24 500 86 000 12 000

M. , M'c = critical molecular weights M, = molecular weight between entanglements M, = gyRT/Gengn being a

front factor /4/ .
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RELATION OF POLYMER STRUCTURE
AND RHEOLOGICAL BEHAVIOR OF
THERMOPLASTICS

Molecular weight distribution of linear
polymers

Influence on zero-shear viscosity and
steady state compliance

A) Polymers with narrow molecular weight
distribution (quasi mono/disperse M,, =
M,)

Figure 2.1 represents the zero shear vis-
cosity and the steady state compliance as a
function of the weight average molecular
weight for narrow-distributed polymers.
The double logarithmic plot shows the zero
shear viscosity increasing linearly with a
slope of 1 as a function of M,, before con-
tinuing the ascent above M, on a straight
line with a slope of 3.4 >'%'>% The inter-
section of the two extrapolated straight lines
is the critical molecular weight M, (cf. Ta-
ble 2.1).

M. is independent of temperature and
for most polymers is equivalent to a mo-
lecular weight corresponding to a chain
length of 300 to 500 main chain atoms .
The strong increase of the zero shear vis-
cosity with the molecular weight above M,
is due to strong interactions

Table 2 .2 Correlation between the steady state
compliance and the average values of molecular

1) Ferry T o
e MW
(2) Mills '® i 37
N
(3) Zosel ¥ i 1\7}, 25
(4) Agarwal ' M oM
']e ~ _y—_y]
[ ]

(entanglements) between the
chains.

polymer

The steady state compliance of narrow-
distribution polymers is proportional to My,
below a critical molecular weight M'.. Be-
yond M’. J.is independent of the molecular
weight (Figure 2.1.)

The value of J, for polystyrene with a
polydispersity of M,/M,-1 =0.11s 1.6 x 10°
m*/N '**_ Critical molecular weight values
M'. for various polymers are compiled in
table 2.1.

B) Polydisperse polymers ( M,, > Mn)

For polydisperse polymers, the zero
shear viscosity varies with the weight aver-
age molecular weight M, for narrow-
distributed polymers. Tests with PMMA,
PS and PE show that the zero shear viscos-
ity is independent of the breath of the distri-
bution. More careful comparison of the zero
shear viscosity for different distributions
(i.e. bimodal, bimodal) shows that the de-
pendence on molecular weight M,, is only
approximate. It has to be concluded that no
average molecular weight is able to de-
scribe the dependence of the zero shear vis-
cosity for all kinds of distributions **.

Contrary to the zero shear viscosity is
the steady state compliance highly depend-
ent on the polydispersity of polymers.

Table 2 .2 lists some relations between
the steady state compliance J, and the mo-
lecular weight distribution, proposed by
various authors. Ferry > developed the rela-
tion (1) based on the Rouse-theory. J,is de-
pendent on molecular weight. This is in the
range beyond M'. contradictory to experi-
mental results

Mills'® and Zosel® correlated the steady
state compliance with the relation of the
second moment and the first moment
squared of the molecular weight distribu-
tion ( M.M,/M,,’). This relation between the
moments of molecular weight distribution
corresponds to the same relation between
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the moments of the relaxation spectrum.
The difference between he exponents of the
relations (2) and (3) indicate that the corre-
lation of J, with the average molecular
weights has only restrictive validity. This is
also true for the relation (4) developed by
Agarwal ' although he uses a large number
of published results to support the empirical
relation.

Influence on linear viscoelastic moduli
and compliances

The modulus G(?) as well as the compli-
ance J(t) are linear viscoelastic functions in
time. The frequency dependence is repre-
sented by the storage modulus G’(@w) and
the loss modulus G”’(w). In the double loga-
rithmic plot (Fig. 2 .2 ) , the shear modulus
G () decreases starting from the glass transi-
tion temperature ( modulus G,), leveling off
into the rubbery plateau which is independ-
ent of time and molecular weight for poly-
mers with M, > M, 1?2036

Beyond the plateau — the modulus fur-
ther decreases (terminal zone). The latter
depends on molecular weight and with in-
creasing molecular weight shifts towards
longer time. The value of the plateau
modulus G,y is independent of molecular
and, in the case of polystyrene, amounts to
2 x 10° N/m? *°. The theory of rubber elas-
ticity allows the calculation of an average
molecular weight M, between entangle-
ments from G,y *. Table 2.1 gives values of
G,y for various polymers.

Starting from a glassy state, the compli-
ance J(t) increases, and for polymers exhib-

its a rubber plateau when M, > M,.. The
value of rubber plateau J,y is equivalent to
the inverted value of G,y > ?’.

Beyond the plateau zone, J(#) further
increases towards a straight line with slope
1 (terminal zone). In the terminal zone, the
polymer undergoes a purely viscous defor-
mation with a constant viscosity 77,.

The recoverable compliance Jz(?) (cf.
Chapter 1, equation (57)) increases with
time and for +— oo equals the steady state
compliance J,. With increasing molecular
weight, the terminal zone for the compli-
ance J(?) shifts towards longer times. With
increasing polymer polydispersity, the tran-
sition from the rubber to the terminal zone
becomes wider. Furthermore, as shown by
figure 2.2, the steady state compliance J, is
much larger for polydisperse than for
monodisperse polymers. For the storage
modulus G'(w) and the loss modulus G"(w)
the increase in molecular weight results in a
shift of the terminal zones towards smaller
frequencies (Figure. 2.2) ®"'*. A rubber
plateau appears for G'(w), independently of
molecular weight beyond M. The loss
modulus shows a molecular weight depend-
ent maximum *°.

With polymers having a broad molecu-
lar weight distribution, the shape and the
height of the rubber plateau is less well de-
fined and the transition into the terminal
zone covers a larger frequency range.

Influence on non-linear behavior
(viscosity function)
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log J(t);
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Figure 2.2 Typical evolution of modulus, compliance, storage and loss moduli for polymer melts.
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At large deformation, resp. deformation
rates polymer melts do not exhibit linear
viscoelastic behavior any more. Above a
critical shear rate, the steady state viscosity
decreases. Dividing the steady state viscos-
ity with the zero shear viscosity and multi-
plying the shear rate with the zero shear vis-
cosity, reduces the viscosity curves for nar-
row-distributed polymers to a single master
curve , independently of molecular weight
n(yn./ny)t %39 This master curve, however
is not independent of molecular weight dis-
tribution. For broad-distributed polymers,
the viscosity function deviates from the lin-
ear behavior at lower shear rates. At high
shear rates, the curves tend to meet again,
independently of the molecular weight dis-
tribution.

Mendelson et al. '® defined a second shift
factor X,,=1/(n,7)"" for commercial poly-
mers. The reduced viscosity function 7(7,
7Xy)/no describes the material behavior
independently of molecular weight and mo-
lecular weight distribution.

The extensional viscosity is three times
the shear viscosity at low deformation rates.
Whereas the shear viscosity decreases
above a critical strain rate, the elongation
viscosity increases first and shows a maxi-
mum before decreasing.

The maximum of the elongational vis-
cosity function 7z(€) depends strongly on
branching. With increasing branching, the
value of the maximum in 7:(€) for a LDPE
increases. No maximum appears at all for
HDPE. A clear differentiation of branching
and molecular weight distribution influ-
ences cannot be made.

Influence of branching

The influence of long-chain-branching
on the zero shear viscosity and the steady
state compliance has been systematically
analyzed with comb and star shaped poly-
mers 1% For polymers with low mo-
lecular weight, the zero shear viscosity is
lower for branched polymers than for linear

polymers with the same molecular weight
M,. The zero shear viscosity of the
branched polymers increases with molecu-
lar weight according to 7, =M>*', of linear
polymers according to 7, ~M**.

Because of the stronger dependence on
molecular weight of the zero shear viscosity
of the branched polymers, the zero shear
viscosity for these polymers becomes larger
than the one for the linear polymers having
the same molecular weight M, /7/.

The lower viscosity of the branched
polymers with small molecular weight is
due to lower drag flow of the polymer coils,
due to the smaller radius of gyration of the
branched molecule, compared to the linear
molecule with the same molecular weight.
At higher molecular weight, the branches
cause a stronger entanglement resistance
which explains the stronger dependence of
the viscosity on molecular weight.

The steady state compliance J, is also
independent of molecular weight M,, start-
ing from a critical molecular weight for nar-
row-distributed branched polymers. The
absolute value of J, however, is much
higher than for linear polymers.

Contrary to long-chain-branches, short-
chain-branches have hardly any influence
on rheological behavior *°. It has to be
noted, however, that short-chain-branched
polymers are much more dependent on tem-
perature than long-chain-branched poly-
mers”.

Blending rules

Binary blends

In 1957, Ninimyia and Fujito® devel-
oped a blending rule for the relaxation spec-
trum with the following assumptions:

a) the molecular weight distribution is
approximated by a multi-component
blend

13 AANO28 V1



b) the relaxation spectrum of the com-
ponents is approximated by a box
distribution,;

c¢) the relaxation spectrum of the blend
is the sum of the spectra of the components
weighted with their volume fraction.

This simple blending rule, however,
does not describe the real behavior of the
polymer as it neglects the interactions be-
tween the various components.

In order to analyze the non-linear be-
havior experimentally, Ninimyia* measured
the relaxation moduli of binary blends of
narrow-distributed poly-vinylacetates and
compared them with the moduli of the
original components. To be able to describe
the relaxation modulus of the blend E,(?) he
had to introduce a shift factor for the
moduli of the components as well as a
weighting factor w;(weight fraction). The
shift factor A; of each component i was de-
termined experimentally.

The analysis of the shift factors in rela-
tion to molecular weight distribution
yielded a proportionality between A; and
(M,/M;)* , a =1, if the molecular weight of
the component i < M.and a = 2.4 for
M>M. From the blending rule for E(1)
the blending rules for the zero-shear viscos-
ity and the steady state compliance D,; can

be derived. The viscosity 7z, calculated
from the blending rule shows a the steeper
increase for w, << [ than for w,->1, which
is also in the experiment (table 2.3). The
experimentally found steady state compli-
ance of the blend D,y (w;) shows a well-
defined maximum for w, ~0.2 and in the
logarithmic plot a slope -2 if wy,->1. This
result is contrary to the linear blending rule
which gives a slope -1 for w,->1.

Prest and Porter **%**°, Murakami and
Bogue et al. established blending rules of a
higher order which aim at a better overlap-
ping between experimental and calculated
steady state compliance.

Multicomponent blends.

Ninimyia and Yasuda ***' extended the
linear blending rule for binary blends (table
2/3) to multicomponent blends. The result-
ing equation contains as variables the shift
factors A, and the relaxation time spectra
H,, of the monodisperse polymer compo-
nent m.

Zosel” changed Ninomiya's blending
rule substituting A, with (M,/M,)’. The re-
laxation time spectrum H, was approxi-
mated by a box distribution with the pa-
rameters H, and ,,,. Furthermore, he in-
troduced the empirical relation T~ M
which means that each molecular weight is

Table 2.3 Determination of the shift factors and prediction of the blending rule for the zero-shear viscosity and

the steady state compliance.

E,(t)=wE (t/A)+wW,E,(t/4,) with w, +w, =1

Meoy = .[0 E,(t)dt = 1, = WA ) + Wy AT,

D,y = ([ tE,(0)dt117,) = Dy, = WA, Doy + W, 2305,2D.0) 30

log Jg,

B =
2] (]
3 o
}“1
%
log t 0

w, 1 0 W, 1
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Table 2.4 Multicomponent blends: relation between linear viscoelastic functions and molecular weight distribu-

tion

a) NINOMIYA and YASUDA

H(lnz) = I:MM)Hm(ln(r//lm)dM with j:w(wsM:1

b) ZOSEL ™

H(lnr) = j:w(M)Hm(ln(r/zm)dM with j:w(M)sM =1

Assumption:

{4

and H,, is a box distribution with parameters H, and z,,,,

H(n7)=H, j: w(M)YdM = H, /1-W (M (7))

with log M (7) = a(logz +b+2log Z\7w) and W(M)= J-: w(M")dM'

related to one characteristic relaxation time.
Zosel thus calculated the relaxation time
spectrum as a function of the cumulative
molecular weight distribution (table 2.4).
To verify this blending rule, the molecular
weight distribution was calculated from the
experimentally measured relaxation spec-
trum and compared with data from GPC
measurements. The agreement between ex-
perimentally and theoretically determined
molecular weight distribution was unsatis-
factory. This is a very rudimentary model to
calculate the molecular weight distribution
from rheology.

REMARKS

The determination of the mechanical
behavior of homologous polymer blends
from the behavior of each component can
only be approximative with these simple
blending rules. Multi-component blending
rules, using a box distribution with the pa-
rameters H, and ¢,,, to characterize the re-
laxation spectra of the monodisperse com-
ponent are to much of a simplification of
the real fact.

A blending rule predicting the mechani-
cal behavior of a polydisperse polymer
starting from the molecular weight distribu-
tion has to take into account a relation be-

tween relaxation time and molecular
weight. The experimentally determined
maximum relaxation time is z,,~M"". If a
blending rule is based on this relation, the
assumption is implicitly made that each re-
laxation time is uniquely correlated to one
molecular weight.

This assumption however is only a
rough approximation as the behavior of a
monodisperse polymer cannot be described
by only one relaxation time, but by a spec-
trum of relaxation times. In this case, each
time constant characterizes a defined mo-
tion of the chain.
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