Microcalorimetry: A Useful Tool for Solving Shelf Life Problems in the Food Industry

Sven-Olof Almqvist
Lotta Karlsson Dunås
Ann Odnevall Rörström
Anna Wiernik

Instrument: 2277 Thermal Activity Monitor
Field of Application: Biology
Date: May 1991

Introduction

Food items are often perishable and have a limited shelf life. Legislation requiring a declaration of "Best before" date and the interest of the manufacturer to assure the quality of his products within the declared time makes a firm control of the adulterating reactions in the product highly desirable. A thorough knowledge of the aging mechanism allows the manufacturer to take proper actions to prevent rapid decay.

Microcalorimetry is a very useful tool for the measurement of the degree of aging of a product and also for the elucidation of the aging mechanism. This can sometimes be a formidable task in such a complex matrix as a food product.

The main mechanisms for food deterioration are:
- Bacterial growth
- Mould or yeast growth
- Enzymatic oxidation reactions
- Chemical oxidation reactions
- Hydrolytic reactions
- Condensation reactions like the Maillard browning reaction.

The degree of instability of food products is determined by its water activity (aw) (Ref 1). Approximate water activities and the expected shelf life for some common foods are shown in table 1. Labuza et al (Ref 2) showed that the water activity to a great degree determines the reaction rate of many spoilage reactions as shown in fig 1. We usually expect a dry food like biscuits to last longer than moist foods like fresh vegetables and meat, since most of the spoilage reactions are favoured by a high aw. Bacterial growth requires a high aw value, typically 0.90. However, different bacterial types have different limits for growth (Ref 3).

<table>
<thead>
<tr>
<th>Food item</th>
<th>Approx aw</th>
<th>Expected shelf life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit</td>
<td>0.99</td>
<td>Year</td>
</tr>
<tr>
<td>Vegetable, Milk,</td>
<td>0.96-0.93</td>
<td>Weak</td>
</tr>
<tr>
<td>Fish, Meat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bread</td>
<td>0.96-0.93</td>
<td>Weak</td>
</tr>
<tr>
<td>Sausage, ham, jam</td>
<td>0.87-0.60</td>
<td>North-Year</td>
</tr>
<tr>
<td>Marmalade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dried fruit</td>
<td>0.60</td>
<td>Year</td>
</tr>
<tr>
<td>Biscuits</td>
<td>&lt;0.50</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Water activity and the expected shelf life for a variety of foods.

Experimental

A 2277 multichannel Thermal Activity Monitor (TAM) of the isothermal heat conduction type was used in these studies. The TAM can be equipped with up to four different calorimetric units each with a combination of functions. Samples were placed in sterilised glass ampoules under the appropriate atmospheric conditions at 37°C, sealed and then lowered into the measuring position in two stages to allow efficient equilibration.
Results and Discussion

By measuring the heat flow from a food sample under conditions that favour or inhibits one or more reactions, information can be gained on the reaction mechanism that causes the spoilage. We applied this technique for solving an instability problem observed in moist tobacco products. However, the same strategy is applicable to many other food products of vegetable origin. After a three month storage of moist tobacco products ($a_w 0.90-0.93$), the pH decreased by about 1 unit and the aroma had changed notably.

The preliminary microcalorimetric investigation indicated a vigorous activity in the moist tobacco. Immediately after moistening and pH adjustment (pH 8-9), the heat output was in the order of 300-400 $\mu W/g$. On storage at room temperature, it decreased to 100-150 $\mu W/g$ after 4 days and to 10-15 $\mu W/g$ after 15 weeks. This high activity is not unexpected since in the manufacturing process we have increased the moisture content to a level similar to a green leaf.

The first question we asked was if the aging reaction was microbial or chemical. Four different experiments were designed to answer this question. Comparison of the heat flow from a reference sample with one which had been autoclaved or gamma-ray sterilised (fig 2), or one with added antibiotics (tetracycline or chloramphenicol) (fig 3), showed that the activity was not caused by bacterial growth. Neither of these treatments decreased the heat flow. Autoclaving and irradiation both increased the heat flow, probably by triggering the chemical reactions.

The rapid decline in activity with time indicated that the substrate and the oxygen were consumed. The latter was confirmed by comparison of a sample which had been sealed for one week in an alumina foil pouch with one exposed to air. The pouch sample (measured in the pouch) produced only about 8 $\mu W/g$, while the one exposed to air gave 100 $\mu W/g$. Furthermore, when the air in the ampoule was changed to nitrogen, the heat flow rapidly decreased to less than 10 $\mu W/g$ within a few hours (fig 4). Measurement of a freshly prepared sample in a perfusion vessel with continuous air flow also showed a decline in heat flow, indicating that the substrate was consumed. In addition, the pH dependence was determined, both on the stored and freshly prepared samples as shown in figures 5 and 6. The heat flow increased dramatically at pH values above 7. Thus, increasing the starting pH before packing in order to compensate for the drop during storage was not fruitful since this increased the oxidation process. Oxygen consumption was measured in separate experiments using sealed alumina foil bags. The average hourly oxygen consumption during the first day after packing was about 1ml/100g of tobacco. The rate was twice
Review of the literature showed that lignine, present in plant material, was easily oxidised by air in alkaline solution (Ref 4). Lignine is considered to be built from phenols of the guaiacol and syringol type. Lignine, while being oxidised produces a drop of pH. The mechanism for this reaction has been elucidated for a number of model substances which make up the backbone of the polymer (Ref 5). The formation of a substituted benzoic acid and carbon dioxide explain the drop in pH.

The obvious solution to the instability problem is to choose an airtight package, possibly also using an inert atmosphere like nitrogen. The microcalorimetric results also demonstrated the importance of storing the product at low temperatures. The reaction rate increases 10-fold for a 20°C rise in temperature.

In conclusion the first rapid reaction is due to the oxidation of monomeric soluble phenols, while the slower reaction is caused by oxidation of insoluble polymeric material like lignine. This was confirmed by the observation of substantial heat generation from the solid matrix remaining after water extraction of the tobacco.

It is well known that the oxidation of polyphenols, guaiacol and syringol is also catalysed by the plant enzymes polyphenoloxidase and polyphenolperoxidase. These enzymes are also present in tobacco and have optimum activity at about pH 6. The fairly constant rate observed in the pH range 5-7 (fig 6) and the steep increase at pH 7 suggests that the enzymatic reaction dominates at the lower pH range and the pure chemical base catalysed reaction dominates at higher pH.

Thus, chlorogenic acid and rutin, major polyphenols in many plants were completely absent in the stored samples. The content of other substances like guaiacol and syringol and their alkyl substituted homologues decreased to less than one tenth of the original value after only 4 days at room temperature. These substances produced by wood smoke, were deposited on tobacco during the "smoke fire-curing" applied to some of the tobacco types used in making the product.
The same strategy as described above was applied to another moist tobacco product. In this case, the instability problem was due to growth of bacteria requiring relatively low water activity. Addition of tetracycline lowered the heat output by 3-5 $\mu$W/g. By adding small amounts of water to increase the $a_w$ by 0.01 units, bacterial growth produced a 40-50 $\mu$W higher heat flow after a few days than the sample with slightly lower $a_w$. The tobacco was found to have an $a_w$ value close to the growth limit for the resident bacterial flora.

Although our work was focused on tobacco products, similar aging problems are expected to occur in other food products. Polyphenols are ubiquitous in plant material. Plants also contain other substances with similar structure, for example Coniferylalcohol, Sinapylalcohol, Ferulic and Syringa acids. Smoke flavour phenols are present in smoked fish and meat products. Even spices like clove contain easily oxidised phenols like Eugenol.

References

(1) Fuchs, G., Compendium of Food Chemistry, Statens Livsmedelsverk, Uppsala, Sweden (1982).


