Local Offices

- New Castle, DE USA +1-302-427-4000
- Lindon, Utah USA +1-801-763-1500
- Crawley, United Kingdom +44-1293-658900
- Shanghai, China +86-21-34263960
- Taipei, Taiwan +886-2-25638880
- Tokyo, Japan +81-3-5798500
- Seoul, Korea +82-2-34131500
- Bangalore, India +91-80-28398963
- Paris, France +33-1-30-48-9460
- Eschborn, Germany +49-6196-400-600
- Brussels, Belgium +32-2-706-0080
- Etten-Leur, Netherlands +31-76-508-7270
- Milano, Italy +39-02-27421283
- Barcelona, Spain +34-93-600-9300
- Melbourne, Australia +61-3-9553-0813
- Mexico City, Mexico +5255-5524-7636
The Model VTI-SA Vapor Sorption Analyzer is a continuous vapor flow sorption instrument for obtaining precision water and organic vapor isotherms at temperatures ranging from 5ºC to 60ºC at ambient pressure. The VTI-SA Analyzer embodies the features of VTI's original SGA design with almost two decades of field-proven performance: the isothermal aluminum block construction, the three isolated thermal zones and chilled-mirror dew point analyzer for primary humidity measurements... all to provide excellent temperature and RH stability.
SYMMETRICAL MICROBALANCE DESIGN

The VTI-SA Analyzer is a symmetrical vapor sorption instrument where both the sample and reference chambers are exposed to the same conditions of temperature and humidity. In this symmetrical design water or organic vapor sorption onto the hangdown wires and sample holders is differentially eliminated and the resultant data represents the uptake by the sample alone. This eliminates the need for background subtraction experiments and associated uncertainty typical in competitive, asymmetrical systems.

RESOLUTION AND STABILITY OF THE MICROBALANCE

The VTI-SA balance boasts a 0.1 microgram sensitivity optimized for pharmaceutical applications. Also, for more effective work in pharmaceutical studies, the design provides an enhanced stability by maintaining the balance compartment at a constant temperature, independent of the sample temperature. Because the balance is maintained at constant temperature, the user has the option of drying the sample at temperatures other than the experimental temperature, or to run different temperature and RH profiles without removing the sample.
VTI-SA Technology

Sample Chamber Design

In the VTI-SA Analyzer the sample and reference chambers are located within an aluminum block maintained at constant temperature (within ±0.1°C) by precise Peltier control elements. Our unique aluminum block design has two distinct advantages. First, due to the high thermal conductivity of the aluminum, thermal gradients within the chambers are minimal. Secondly, because the chamber is a metal block, the issues of static electricity are eliminated. This feature is especially useful when analyzing finely divided powders, as is often the case with pharmaceuticals. The sample temperature is measured with a highly accurate, calibrated platinum resistance thermometer. For pre-experimental drying of the sample, the block can be heated to 150°C using resistance cartridge heaters.

Precision Humidity Measurements

As part of our standard design, the VTI-SA uses a chilled mirror dew point analyzer (a NIST-traceable standard for humidity) to determine the humidity of the sample. In applications where RH control is critical (as in most pharmaceutical studies), chilled-mirror dew point analyzers are the preferred method, because of the absence of drift and long term stability.

Sorption Testing Using an Organic Vapor

The VTI-SA can also be used for organic vapor sorption. In the VTI-SA, the concentration of the organic vapor in the gas stream reaching the sample is determined by the fraction of gas going through the organic solvent evaporator and the fraction of dry gas. In competitive systems, assumptions are made that the evaporator is 100% efficient and that the temperature of the evaporator is constant from low to high concentrations. The VTI-SA system measures the temperature of the organic solvent in the evaporator and uses this information together with the Wagner equation to control the organic vapor concentration in the gas phase. This method solves the issue of the adiabatic cooling of the solvent, a major source of error in competitive systems.

The solvent containers/evaporators are easily removed so there is no need for decontamination or cleaning of the system when changing organic solvents or reverting to water adsorption experiments. For safety, the evaporator compartment is purged with dry nitrogen and fitted with a combustible gas sensor with an audible alarm that when triggered shuts down the power to the analyzer.
VTI-SA3 Sorption Analyzer

The VTI-SA3 is a unique “triple balance” instrument to increase adsorption testing throughput. This analyzer runs up to 3 samples simultaneously under identical conditions of temperature and humidity for sorption testing in pharmaceutical research, screening and quality control applications. The VTI-SA3 uses field-proven sorption testing technology based on almost 20 years of experience with our predecessor SQA Series Analyzers, and delivers performance equivalent to the VTI-SA including standard capability for testing with organic vapors.
Q5000 SA

The Q5000 SA is designed for manual or automated sorption analysis of materials under controlled conditions of temperature and relative humidity (RH). Its design integrates our latest high sensitivity, temperature-controlled thermobalance with an innovative humidity generation system, multi-position autosampler, and powerful Advantage™ software with technique specific programs and Platinum™ features. The patented Q5000 SA delivers the performance and reliability required in a leading sorption analyzer and in a compact, user-friendly design.

TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance Capacity</td>
<td>1g</td>
</tr>
<tr>
<td>Temperature Controlled Thermobalance</td>
<td>Included</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>100 mg</td>
</tr>
<tr>
<td>Weighing Accuracy</td>
<td>+/- 0.1%</td>
</tr>
<tr>
<td>Weighing Precision</td>
<td>+/- 0.01%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>< 0.1 µg</td>
</tr>
<tr>
<td>Baseline Drift*</td>
<td>< 5 µg</td>
</tr>
<tr>
<td>Signal Resolution</td>
<td>0.01 µg</td>
</tr>
<tr>
<td>Temperature Control</td>
<td>Peltier Elements</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>5 to 85 °C</td>
</tr>
<tr>
<td>Isothermal Stability</td>
<td>+/- 0.1 °C</td>
</tr>
<tr>
<td>Relative Humidity Control Range</td>
<td>0 to 99% RH</td>
</tr>
<tr>
<td>Accuracy</td>
<td>+/- 1% RH</td>
</tr>
<tr>
<td>Autosampler – 10 samples**</td>
<td>Included</td>
</tr>
<tr>
<td>Platinum™ Software</td>
<td>Included</td>
</tr>
<tr>
<td>Sample Pans</td>
<td>Metal Coated Quartz 180 µL</td>
</tr>
<tr>
<td></td>
<td>Platinum 50, 100 µL</td>
</tr>
<tr>
<td></td>
<td>Aluminum Sealed Pan 20 µL</td>
</tr>
</tbody>
</table>

* Over 24 hours at 25 °C and 20% RH with empty metal coated quartz pans

** Optional tray accommodates 10 samples for use with platinum and sealed aluminum pans
Q5000 SA Technology

The Q5000 SA is a compact, benchtop instrument that delivers the performance and reliability required in a leading sorption analyzer designed for the study of materials under controlled conditions of temperature and relative humidity. Its modern, user-friendly design features a high sensitivity, temperature-controlled thermobalance, an innovative humidity generation system, a 10-position autosampler, and our latest Advantage™ software with Platinum™ features.

Thermobalance

The heart of the Q5000 SA is our latest high performance thermobalance maintained at a constant 35.00 °C by three symmetrically arranged heaters in a well-insulated, gas-jetted chamber. Isolated from the furnace by a water-cooled plate, the sensitive, null-balance design features the latest in precision weighing technology. A key feature of the design for sorption analysis operation is the perfect symmetry of the balance assembly. Customer benefits of the patented design include sensitive, reliable operation with superior baseline flatness and exceptional accuracy and precision in weight change detection; factors that are critical for proper gravimetric sorption analysis performance and are totally free from any vapor condensation or electrostatic forces.

Autosampler

The integral Q5000 SA Autosampler features a programmable multi-position sample carousel that permits automated analysis of up to 10 samples using semispherical quartz or metal-coated quartz needles, and 25 samples using the optional Q5000 IR tray and platinum or sealed aluminum pans. The design provides smooth and efficient loading and unloading of the sample pan without disturbing the balance. All aspects of sample handling are automated and software-controlled, including pan taring and loading, sample weighing, autosampler movement, furnace movement, pan unloading and furnace cooling. Autosampler productivity is software maximized by our Advantage™ software, which provides pre-programmed analysis, comparison, and presentation of results.
Humidity Control Chamber

The patented design features a pair of mass flow controllers (MFCs) that accurately meter and proportion gas to a symmetrical, well-insulated, aluminum block. The block contains a humidifier, gas transmission and mixing lines, plus easily accessible, identically arranged, sample and reference measurement chambers. Temperature regulation of the block interior from 5 to 85 °C is performed by four thermoelectric (Peltier) devices in conjunction with a thermostat in a closed-loop system. The mass flow controllers adjust the amounts of wet (saturated) and dry gas to obtain humidities from 0 to 95% RH. Identical sensors are located adjacent to the sample and reference crucibles, and provide a continuous indication of humidity. Benefits of the design include precise temperature control and highly consistent atmosphere within the sample and reference chambers.
Vapor Sorption analysis is an established technique for determining the effect on materials of exposure to controlled conditions of temperature and humidity. Isotherm and Isohume™ experiments are the most commonly performed analyses.

All TA Instruments sorption analyzers perform a range of essential sorption experiments, such as time-courses, isotherms (constant temperature, variable RH), and isohumidities (Isohume™ experiments, constant RH, variable temperature). Complex protocols with step changes in temperature and RH can be defined and saved for later use. Also, multiple experiments can be run sequentially without further operator assistance.

In isotherm experiments, a weighed sample is "dried" externally, or preferably in the instrument, and exposed to a series of humidity step changes at constant temperature. The sample is staged at each humidity level until no further weight change is detected or a set time has elapsed. A data point is recorded, the humidity is changed in 5 or 10% controlled RH steps and the process repeated in an upward and/or downward increasing or decreasing procedure. Isohume experiments involve a series of temperature step changes at constant humidity and result in similar plots. They are used to determine how sample exposure to a given humidity results in a physicochemical change, such as a change in the sample’s hydration state. The curve shapes provide useful information in this end.

TA Instruments analysis software offers Sorption Analysis, BET Analysis, and GAB programs. In addition, the full power and flexibility of our renowned Universal Analysis software provides for easy data manipulation, advanced reporting, plotting and file exporting capabilities. In addition, advanced data reduction of VTI-SA data can be performed using custom designed data analysis packages. Analysis options include:

- Kinetic analysis for the determination of rate constant of adsorption.
- Isoteric heat of adsorption using the Clausius-Clapeyron equation.
- Surface area calculation using the BET equation for either water or organic vapors.

Gravimetric Vapor Sorption Analysis – General Practice

Vapor Sorption analysis is an established technique for determining the effect on materials of exposure to controlled conditions of temperature and humidity. Isotherm and Isohume™ experiments are the most commonly performed analyses.

All TA Instruments sorption analyzers perform a range of essential sorption experiments, such as time-courses, isotherms (constant temperature, variable RH), and isohumidities (Isohume™ experiments, constant RH, variable temperature). Complex protocols with step changes in temperature and RH can be defined and saved for later use. Also, multiple experiments can be run sequentially without further operator assistance.

In isotherm experiments, a weighed sample is “dried” externally, or preferably in the instrument, and exposed to a series of humidity step changes at constant temperature. The sample is staged at each humidity level until no further weight change is detected or a set time has elapsed. A data point is recorded, the humidity is changed in 5 or 10% controlled RH steps and the process repeated in an upward and/or downward increasing or decreasing procedure. Isohume experiments involve a series of temperature step changes at constant humidity and result in similar plots. They are used to determine how sample exposure to a given humidity results in a physicochemical change, such as a change in the sample’s hydration state. The curve shapes provide useful information in this end.

TA Instruments analysis software offers Sorption Analysis, BET Analysis, and GAB programs. In addition, the full power and flexibility of our renowned Universal Analysis software provides for easy data manipulation, advanced reporting, plotting and file exporting capabilities. In addition, advanced data reduction of VTI-SA data can be performed using custom designed data analysis packages. Analysis options include:

- Kinetic analysis for the determination of rate constant of adsorption.
- Isoteric heat of adsorption using the Clausius-Clapeyron equation.
- Surface area calculation using the BET equation for either water or organic vapors.
Applications

Evaluation of Amorphous Structure
Pharmaceutical scientists are often interested in determining the amount of amorphous material in a drug formulation. As the amorphous and crystalline forms are chemically identical, classical analyses techniques are often insensitive to amorphous content. The figure below shows the moisture sorption analysis of a generic drug in its amorphous and crystalline forms. As the amorphous form absorbs significantly more water, vapor sorption analysis can be used to quantify relative amorphous content in drug mixtures.

Analyzing Small Amounts of Pharmaceuticals
When evaluating pharmaceuticals, it is common for only small amounts of material to be available for conducting multiple analytical tests. Hence, the ability to work with small samples is critical. The low baseline drift of the Q2000 SA means that good results can be obtained on even 10-20 milligrams of crystalline drugs such as prednisone, which adsorbs <1% moisture over a broad humidity range. The sorption results shown below represent about 15 micrograms of weight change per cycle. The reversibility (loss of hygroscopicity) of the sorption/desorption profile for prednisone (as well as the low level of moisture associated) indicates that the moisture picked up by the material is adsorbed on the surface of the material rather than being absorbed into its structure.

Hydrate Formation
The figure below contains the experimental results demonstrating the formation of a hydrate. The hydrate formation is characterized by a plateau in the desorption branch of the isotherm. In this example the hydrate is formed on around 43% RH. The sample absorbs about 4.5% by weight water and does not lose the water of hydration until the RH is lowered below 25%. This hydrate would be considered as a labile or unstable hydrate.

Characterization of Morphological Stability
Exposure to elevated humidity can initiate morphological changes in some pharmaceutical materials, particularly in amorphous systems. As the humidity is increased, the adsorbed water plastically deforms the material and lowers the glass transition. When the glass transition temperature decreases to the experimental temperature, crystallization will typically occur. The data in the figure below show the behavior of amorphous lactose at 25°C under a constant increase in humidity. Note how the character in the measured weight signal is indicative of a variety of morphological changes, including the glass transition, and subsequent crystallization of the amorphous phase.
APPLICATIONS

SAMPLE THROUGHPUT: VTI-SA3

The VTI-SA3 is designed to provide high sample throughput without sacrificing data quality, accuracy or reproducibility. The figure below contains the data from three polyethylene glycol (PEG) samples which were analyzed simultaneously on the VTI-SA. The samples were initially dried at 25°C and 0% RH, and the data are initially normalized to % weight change. The relative humidity was then increased initially to 10%, then to 50% and finally 85% RH. The resulting data demonstrates the reproducibility of the simultaneous continuous measurement. The inset table contains the quantified weight change at each equilibrium, and confirms the reproducibility of measured data.

![Graph showing sample throughput data](image)

ORGANIC VAPOR SORPTION (VTI-SA)

With the organic vapor sorption capability, the VTI-SA can obtain not only water sorption isotherms, but can also be used to generate organic vapor isotherms. The use of organic vapor increases the sensitivity of the sorption measurement for many pharmaceutical and polymer materials. The figure below contains the sorption isotherms for alpha-amylase with ethanol at 25°C.

![Graph showing sorption isotherms](image)